Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fiber-Laser System for optimized industrial Micro-Material Processing

Together with six industrial partners, the Laser Zentrum Hannover e.V. (LZH) has developed a picosecond laser system based on fibre lasers. This system has achieved excellent micro-machining results for brass and aluminum.

Industry has placed a long list of demands on micro-machining laser systems – the laser beam must be easy to focus, nearly non-fluctuating, and beam re-alignment should be minimised. The system must be as compact as possible, placed close to the workpiece, yet not susceptible to rough manufacturing environments.

Microscopic image of a workpiece made of V70 hard metal, which can be used a stamp.

Up to now, solid-state lasers have been used for metal micro-machining. These systems are usually based on free-beam set-ups, which are easily brought out of alignment. Since the laser systems need water cooling, they are relatively large and difficult to integrate into the production line.

A newly developed, fiber-based picosecond laser system fulfils all the requirements for industrial use. It is the result of a research project PULSAR (PUlsed Laser System with Adaptive Pulse PaRameters). This system is especially flexible and adaptable to different settings because the laser oscillator and amplifier are separated. Depending on the material and the desired process results, the repetition frequency and the average output can be easily adapted to the current process. Thus, quick and up to now unique optimization of the work steps is possible.

A laser diode with a wavelength of 1,03 µm and a pulse length of approximately 40 ps serves as the pulse source. The pulse repetition rate is highly flexible, and can be set between 50 kHz and 40 Mhz. Using a three-step amplifier, the pulse can be amplified from several 10 µW to an average output power of 14 W. At a repetition rate of 1 MHz, a pulse energy of 14 µJ is possible.

The fiber-based, picosecond laser system has an excellent beam quality, and is resistant to difficult production environments, such as dust contamination, temperature fluctuation, or mechanical vibrations. Also, very good results in working aluminum or brass have been achieved. Further, the system is smaller and less expensive than conventional solid-state lasers. There are many fields of applications for this new, high-power laser; among them marking aluminum, or for making stamps of hard metal (V70), for example for stamping coins.

The project PULSAR is subsidized by the BMBF initiative INLAS (Integrated-optical Components for High-power Laser Sources; FKZ: 13N9685). The companies PicoQuant GmbH, InnoLight GmbH, LPKF Laser & Electronics AG, cicor Microelectronics and Alltec GmbH FOBA Laser Marking + Engraving are also involved in the project (see

Results of the LZH subproject were presented at the LASE conference/Photonics West 2011 in San Francisco (report number 7914-36) and in the journal Optics Express 19(3), p. 1854 (2011) entitled „All-fiber based amplification of 40 ps pulses from a gain-switched laser diode“.

Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>