Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber-Laser System for optimized industrial Micro-Material Processing

26.04.2011
Together with six industrial partners, the Laser Zentrum Hannover e.V. (LZH) has developed a picosecond laser system based on fibre lasers. This system has achieved excellent micro-machining results for brass and aluminum.

Industry has placed a long list of demands on micro-machining laser systems – the laser beam must be easy to focus, nearly non-fluctuating, and beam re-alignment should be minimised. The system must be as compact as possible, placed close to the workpiece, yet not susceptible to rough manufacturing environments.


Microscopic image of a workpiece made of V70 hard metal, which can be used a stamp.

Up to now, solid-state lasers have been used for metal micro-machining. These systems are usually based on free-beam set-ups, which are easily brought out of alignment. Since the laser systems need water cooling, they are relatively large and difficult to integrate into the production line.

A newly developed, fiber-based picosecond laser system fulfils all the requirements for industrial use. It is the result of a research project PULSAR (PUlsed Laser System with Adaptive Pulse PaRameters). This system is especially flexible and adaptable to different settings because the laser oscillator and amplifier are separated. Depending on the material and the desired process results, the repetition frequency and the average output can be easily adapted to the current process. Thus, quick and up to now unique optimization of the work steps is possible.

A laser diode with a wavelength of 1,03 µm and a pulse length of approximately 40 ps serves as the pulse source. The pulse repetition rate is highly flexible, and can be set between 50 kHz and 40 Mhz. Using a three-step amplifier, the pulse can be amplified from several 10 µW to an average output power of 14 W. At a repetition rate of 1 MHz, a pulse energy of 14 µJ is possible.

The fiber-based, picosecond laser system has an excellent beam quality, and is resistant to difficult production environments, such as dust contamination, temperature fluctuation, or mechanical vibrations. Also, very good results in working aluminum or brass have been achieved. Further, the system is smaller and less expensive than conventional solid-state lasers. There are many fields of applications for this new, high-power laser; among them marking aluminum, or for making stamps of hard metal (V70), for example for stamping coins.

The project PULSAR is subsidized by the BMBF initiative INLAS (Integrated-optical Components for High-power Laser Sources; FKZ: 13N9685). The companies PicoQuant GmbH, InnoLight GmbH, LPKF Laser & Electronics AG, cicor Microelectronics and Alltec GmbH FOBA Laser Marking + Engraving are also involved in the project (see www.ot-inlas.de/pulsar/).

Results of the LZH subproject were presented at the LASE conference/Photonics West 2011 in San Francisco (report number 7914-36) and in the journal Optics Express 19(3), p. 1854 (2011) entitled „All-fiber based amplification of 40 ps pulses from a gain-switched laser diode“.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>