Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Type of Laser

21.05.2013
University of Würzburg physicists have succeeded in creating a new type of laser.

Its operation principle is completely different from conventional devices, which opens up the possibility of a significantly reduced energy input requirement. The researchers report their work in the current issue of Nature.


Diagram of the electrically driven polariton laser
Graphics: Arash Rahimi-Iman, Department of Applied Physics, University of Würzburg

It also emits light the waves of which are in phase with one another: the polariton laser, developed and validated by University of Würzburg physicists at the Department of Applied Physics, who have worked for years on the respective experiments in close collaboration with an international research team.

In this respect, it is similar to the conventional semiconductor laser, which is ubiquitous today in all sorts of places and devices – from the laboratory to the CD player in the living-room.

How a polariton laser works

However, the physical processes taking place in a polariton laser are fundamentally different. "In simplified terms, we send electrons and electron holes into a quantum well by applying an electric voltage. Due to their opposite charge, they are attracted to each other and form a so-called exciton together. The polaritons result from the strong light-matter coupling of these excitons in semiconductor microcavities. These decay after a short time, emitting photons in the process," says Sven Höfling, a research associate at the Department of Applied Physics, explaining the formation mechanism. He conducted the relevant experiments together with Christian Schneider and Arash Rahimi-Iman.
When excitons decay, photons are created. These are reflected by cavity mirrors in the direction of the quantum well. There, the photons can be absorbed again, in which process new excitons are produced. "Thus, there is a periodic energy exchange in the strong coupling regime and new quasiparticles, known as polaritons, are continuously produced" says Höfling.

Controllable characteristics of the polariton

"The mass of a polariton is extremely small, approximately as tiny as that of a photon in the microcavity," says Christian Schneider. Basically, a polariton possesses mixed characteristics of excitons and photons. With the setup of the experiment, the physicists can determine to which degree the respective characteristics are pronounced.

Of course, the confinement of the polaritons between the mirrors does not last forever. "We use mirrors with a finite reflectivity," Schneider explains. As a consequence, the polariton laser also emits coherent light – the laser beam. In this respect, the result can hardly be distinguished from that of a conventional laser, even though it is based on a completely different principle of operation. However, the polariton laser requires significantly less energy for this process; the energy consumption decreases by one to two orders of magnitude according to Schneider.

Clear proof not easily obtainable

As early as in 2007, Sven Höfling had the idea of developing an electrically driven polariton laser; the study group started with the experiments in 2008. Working in collaboration with colleagues at Stanford University, they soon obtained their first results. At this point, the researchers were confronted with a fundamental problem: "It is extremely difficult to determine whether you have created a polariton laser or just a normal laser. The characteristics of the emitted light are generally quite indistinguishable," says Höfling. In order to establish clear proof of polariton laser operation, an international research team with partners from the USA, Japan, Russia, Singapore, Iceland and Germany supplemented the first experiments with another component. "Because matter is sensitive to magnetic fields, we have carried out our measurements anew, examining the sample in a magnetic field," Schneider explains. The result shows clearly that polaritons were actually present.

In order to work well, the Würzburg polariton laser needs very low temperatures of about 10 K – i.e. minus 263 degrees Celsius. The physicists would like to change this requirement. They intend to set the process going even at room temperature. This is interesting for another reason as well: "The processes taking place in a polariton laser are closely related to those in a Bose-Einstein condensate," explains Christian Schneider.

Close to the Bose-Einstein condensate

The Bose-Einstein condensate: It is known by physicists as a form of matter with very peculiar characteristics. It can be induced if you cool atoms to temperatures very near zero kelvin, i.e. near absolute zero. In this state, the atoms give up their individual identity and they all behave like one single super atom.
For the moment, the scientists are pleased with what they have achieved so far: "Due to the electrical operation, our results represent a great step towards the practical application of polaritonic light sources," says Sven Höfling. Furthermore, he is confident that an electrically driven polariton laser that even works at room temperature will soon be fabricated with the help of suitable materials.

An electrically pumped polariton laser. Christian Schneider, Arash Rahimi-Iman, Na Young Kim, Julian Fischer, Ivan G. Savenko, Matthias Amthor, Matthias Lermer, Adriana Wolf, Lukas Worschech, Vladimir D. Kulakovskii, Ivan A. Shelykh, Martin Kamp, Stephan Reitzenstein, Alfred Forchel, Yoshihisa Yamamoto & Sven Höfling. Nature, doi:10.1038/nature12036

Contact person

Dr. Sven Höfling, T: +49 (0)931 31-83613, sven.hoefling@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>