Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A New Type of Laser

University of Würzburg physicists have succeeded in creating a new type of laser.

Its operation principle is completely different from conventional devices, which opens up the possibility of a significantly reduced energy input requirement. The researchers report their work in the current issue of Nature.

Diagram of the electrically driven polariton laser
Graphics: Arash Rahimi-Iman, Department of Applied Physics, University of Würzburg

It also emits light the waves of which are in phase with one another: the polariton laser, developed and validated by University of Würzburg physicists at the Department of Applied Physics, who have worked for years on the respective experiments in close collaboration with an international research team.

In this respect, it is similar to the conventional semiconductor laser, which is ubiquitous today in all sorts of places and devices – from the laboratory to the CD player in the living-room.

How a polariton laser works

However, the physical processes taking place in a polariton laser are fundamentally different. "In simplified terms, we send electrons and electron holes into a quantum well by applying an electric voltage. Due to their opposite charge, they are attracted to each other and form a so-called exciton together. The polaritons result from the strong light-matter coupling of these excitons in semiconductor microcavities. These decay after a short time, emitting photons in the process," says Sven Höfling, a research associate at the Department of Applied Physics, explaining the formation mechanism. He conducted the relevant experiments together with Christian Schneider and Arash Rahimi-Iman.
When excitons decay, photons are created. These are reflected by cavity mirrors in the direction of the quantum well. There, the photons can be absorbed again, in which process new excitons are produced. "Thus, there is a periodic energy exchange in the strong coupling regime and new quasiparticles, known as polaritons, are continuously produced" says Höfling.

Controllable characteristics of the polariton

"The mass of a polariton is extremely small, approximately as tiny as that of a photon in the microcavity," says Christian Schneider. Basically, a polariton possesses mixed characteristics of excitons and photons. With the setup of the experiment, the physicists can determine to which degree the respective characteristics are pronounced.

Of course, the confinement of the polaritons between the mirrors does not last forever. "We use mirrors with a finite reflectivity," Schneider explains. As a consequence, the polariton laser also emits coherent light – the laser beam. In this respect, the result can hardly be distinguished from that of a conventional laser, even though it is based on a completely different principle of operation. However, the polariton laser requires significantly less energy for this process; the energy consumption decreases by one to two orders of magnitude according to Schneider.

Clear proof not easily obtainable

As early as in 2007, Sven Höfling had the idea of developing an electrically driven polariton laser; the study group started with the experiments in 2008. Working in collaboration with colleagues at Stanford University, they soon obtained their first results. At this point, the researchers were confronted with a fundamental problem: "It is extremely difficult to determine whether you have created a polariton laser or just a normal laser. The characteristics of the emitted light are generally quite indistinguishable," says Höfling. In order to establish clear proof of polariton laser operation, an international research team with partners from the USA, Japan, Russia, Singapore, Iceland and Germany supplemented the first experiments with another component. "Because matter is sensitive to magnetic fields, we have carried out our measurements anew, examining the sample in a magnetic field," Schneider explains. The result shows clearly that polaritons were actually present.

In order to work well, the Würzburg polariton laser needs very low temperatures of about 10 K – i.e. minus 263 degrees Celsius. The physicists would like to change this requirement. They intend to set the process going even at room temperature. This is interesting for another reason as well: "The processes taking place in a polariton laser are closely related to those in a Bose-Einstein condensate," explains Christian Schneider.

Close to the Bose-Einstein condensate

The Bose-Einstein condensate: It is known by physicists as a form of matter with very peculiar characteristics. It can be induced if you cool atoms to temperatures very near zero kelvin, i.e. near absolute zero. In this state, the atoms give up their individual identity and they all behave like one single super atom.
For the moment, the scientists are pleased with what they have achieved so far: "Due to the electrical operation, our results represent a great step towards the practical application of polaritonic light sources," says Sven Höfling. Furthermore, he is confident that an electrically driven polariton laser that even works at room temperature will soon be fabricated with the help of suitable materials.

An electrically pumped polariton laser. Christian Schneider, Arash Rahimi-Iman, Na Young Kim, Julian Fischer, Ivan G. Savenko, Matthias Amthor, Matthias Lermer, Adriana Wolf, Lukas Worschech, Vladimir D. Kulakovskii, Ivan A. Shelykh, Martin Kamp, Stephan Reitzenstein, Alfred Forchel, Yoshihisa Yamamoto & Sven Höfling. Nature, doi:10.1038/nature12036

Contact person

Dr. Sven Höfling, T: +49 (0)931 31-83613,

Gunnar Bartsch | Uni Würzburg
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>