Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record for the entanglement of twisted light quanta

02.11.2012
To this end, the researchers developed a new method for entangling single photons which gyrate in opposite directions.
This result is a first step towards entangling and twisting even macroscopic, spatially separated objects in two different directions. The researchers at the Vienna Center for Quantum Science and Technology (VCQ), situated at the University of Vienna, and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences have were able to get their pioneering results published in the current issue of the renowned scientific journal Science.

Quantum physics is usually considered to be the theory of extremely lightweight objects, such as atoms or photons, or of exceptionally small units, namely very small quantum numbers. One of the most fascinating phenomena of quantum physics is that of entanglement. Entangled quanta of light behave as if able to influence each other – even as they are spatially separated.

False-color image of a laser beam exhibiting a superposition of 100 right-handed and 100 left-handed quanta of orbital angular momenta, resulting in 100+100=200 bright spots on the inner ring

Credit: Robert Fickler, University of Vienna


A long-exposure photo of laser light in 'donut modes' (light beams with no intensity in the middle).

Credit: Robert Fickler, University of Vienna

The question of whether or not entanglement is limited to tiny objects or very small quantum numbers came up already in the early days of quantum physics. Now, the Vienna group has taken the first step for testing quantum mechanical entanglement with rotating photons.

To illustrate, a quantum mechanical figure skater would have the uncanny ability to pirouette both clockwise and counter-clockwise simultaneously. Moreover, the direction of her rotations would be correlated with the twirls of another, entangled, skater – even if the two ice dancers whirl far removed from each other, in ice rinks on different continents.

The faster the two quantum skaters pirouette, the larger is the quantum number of their rotation direction, the so-called angular momentum. "In our experiment, we entangled the largest quantum numbers of any kind of particle ever measured," declares Zeilinger with a wry smile.

Could quantum ice dancers exist in reality?

It has been common knowledge for about 20 years now that theoretically, there is no upper limit for the angular momentum of photons. Previous experiments, however, have been limited, due to physical restrictions, to very weak angular momentum and small quantum numbers. In the Vienna experiment, it is theoretically possible to create entanglement regardless of the strength of the angular momentum or the scale of its quantum number. "Only our limited technical means stop us from creating entanglement with twisted photons that could be sensed even with bare hands," states Robert Fickler, the main author of the current Science publication. And so, the researchers have demonstrated that it is possible in principle to twirl entangled ice skaters simultaneously both in clockwise and counter-clockwise directions. In practice, a number of major challenges need to be addressed before such an experiment can be realized with macroscopic objects.

From fundamental research to technical applications

In addition to the fundamental issue of the limits of macroscopic entanglement, the physicists address possibilities of potential applications. They are, for example, able to use the created photons for very precise angular measurements already at low intensities of light. This feature is of advantage in particular when investigating light sensitive materials, as for example some biological substances. "The special features of entanglement provide the fantastic possibility to perform such measurements from arbitrary distances and without any contact whatsoever with the measured object, or even at a point in time that lies in the future!" Fickler explains.

This research was supported by the European Research Council (ERC) and the Austrian Science Fund (FWF).

Publication:
Quantum Entanglement of High Angular Momenta
Robert Fickler, Radek Lapkiewicz, William N. Plick, Mario Krenn, Christoph Schaeff, Sven Ramelow, Anton Zeilinger to be published in Science/ 2nd november issue.
Further information:
Research Group Quantum Optics, Quantum Nanophysics & Quantum Information, Faculty of Physics, University of Vienna and Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences: http://www.quantum.at/ Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at/
Contact scientist:
Dipl. Phys. Robert Fickler
Quantum Optics, Quantum Nanophysics & Quantum Information
Faculty of Physics, University of Vienna
Institute for Quantum Optics and Quantum Information (ÖAW)
Boltzmanngasse 3, A-1090 Vienna, Austria
T 43-142-772-9568
robert.fickler@univie.ac.at
Further enquiry note:
Verena Bock
Office Anton Zeilinger
Quantum Optics, Quantum Nanophysics & Quantum Information
Faculty of Physics, University of Vienna
Institute for Quantum Optics and Quantum Information (ÖAW)
Boltzmanngasse 3, A-1090 Vienna, Austria
T 43-142-775-1166
zeilinger-office@univie.ac.at

Veronika Schallhart | EurekAlert!
Further information:
http://www.univie.ac.at

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>