Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What happens when cosmic giants meet galactic dwarfs?

13.07.2015

When two different sized galaxies smash together, the larger galaxy stops the smaller one making new stars, according to a study of more than 20,000 merging galaxies.

The research, published today, also found that when two galaxies of the same size collide, both galaxies produce stars at a much faster rate.


A short, one minute entertaining and engaging animation showing what happens when big galaxies meet little galaxies.

Credit: The International Centre for Radio Astronomy Research

Astrophysicist Luke Davies, from The University of Western Australia node of the International Centre for Radio Astronomy Research (ICRAR), says our nearest major galactic neighbour, Andromeda, is hurtling on a collision course with the Milky Way at about 400,000 kilometres per hour.

"Don't panic yet, the two won't smash into each other for another four billion years or so," he says.

"But investigating such cosmic collisions lets us better understand how galaxies grow and evolve."

Previously, astronomers thought that when two galaxies smash into each other their gas clouds--where stars are born--get churned up and seed the birth of new stars much faster than if they remained separate.

However Dr Davies' research, using the Galaxy and Mass Assembly (GAMA) survey observed using the Anglo-Australian Telescope in regional New South Wales, suggests this idea is too simplistic.

He says whether a galaxy forms stars more rapidly in a collision, or forms any new stars at all, depends on if it is the big guy or the little guy in this galactic car crash.

"When two galaxies of similar mass collide, they both increase their stellar birth rate," Dr Davies says.

"However when one galaxy significantly outweighs the other, we have found that star formation rates are affected for both, just in different ways.

"The more massive galaxy begins rapidly forming new stars, whereas the smaller galaxy suddenly struggles to make any at all.

"This might be because the bigger galaxy strips away its smaller companion's gas, leaving it without star-forming fuel or because it stops the smaller galaxy obtaining the new gas required to form more stars."

The study was released today in the journal Monthly Notices of the Royal Astronomical Society, published by Oxford University Press.

So what will happen in four billion years to the Milky Way and Andromeda?

Dr Davies says the pair are like "cosmic tanks"--both relatively large and with similar mass.

"As they get closer together they will begin to affect each other's star formation, and will continue to do so until they eventually merge to become a new galaxy, which some call 'Milkdromeda'," he says.

###

Further Information:

ICRAR is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

Journal publication details:

'Galaxy and Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies' in the Monthly Notices of the Royal Astronomical Society. Published online on 13/7/2015 at: http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv1241

Contacts:

Dr Luke Davies
ICRAR - UWA (Perth, GMT +8:00)
Ph: +61 8 6488 7750 M: +61 466 277 672 E: luke.davies@icrar.org

Pete Wheeler
Media Contact, ICRAR (Perth, GMT +8:00)
Ph: +61 8 6488 7758 M: +61 423 982 018 E: pete.wheeler@icrar.org

Multimedia:
Images and an animation are available at: http://www.icrar.org/giantsvdwarfs

Media Contact

Pete Wheeler
pete.wheeler@icrar.org
61-423-982-018

http://www.icrar.org/ 

Pete Wheeler | EurekAlert!

Further reports about: Andromeda GMT Galaxies Galaxy Milky Way astronomy collision star formation

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>