Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VLBA observations key to 'complete description' of black hole

18.11.2011
Precise distance measurement allowed calculation of mass, spin rate

For the first time, astronomers have produced a complete description of a black hole, a concentration of mass so dense that not even light can escape its powerful gravitational pull. Their precise measurements have allowed them to reconstruct the history of the object from its birth some six million years ago.

Using several telescopes, both ground-based and in orbit, the scientists unravelled longstanding mysteries about the object called Cygnus X-1, a famous binary-star system discovered to be strongly emitting X-rays nearly a half-century ago. The system consists of a black hole and a companion star from which the black hole is drawing material. The scientists' efforts yielded the most accurate measurements ever of the black hole's mass and spin rate.

"Because no other information can escape from a black hole, knowing its mass, spin, and electrical charge gives a complete description of it," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics (CfA). "The charge of this black hole is nearly zero, so measuring its mass and spin make our description complete," he added.

Though Cygnus X-1 has been studied intensely since its discovery, previous attempts to measure its mass and spin suffered from lack of a precise measurement of its distance from Earth. Reid led a team that used the National Science Foundation's Very Long Baseline Array (VLBA), a continent-wide radio-telescope system, to make a direct trigonometric measurement of the distance. Their VLBA observations provided a distance of 6070 light-years, while previous estimates had ranged from 5800-7800 light-years.

Armed with the new, precise distance measurement, scientists using the Chandra X-Ray Observatory, the Rossi X-Ray Timing Explorer, the Advanced Satellite for Cosmology and Astrophysics, and visible-light observations made over more than two decades, calculated that the black hole in Cygnus X-1 is nearly 15 times more massive than our Sun and is spinning more than 800 times per second.

"This new information gives us strong clues about how the black hole was born, what it weighed and how fast it was spinning," Reid said. "Getting a good measurement of the distance was crucial," Reid added.

"We now know that Cygnus X-1 is one of the most massive stellar black holes in the Milky Way," said Jerry Orosz, of San Diego State University. "It's spinning as fast as any black hole we've ever seen," he added.

In addition to measuring the distance, the VLBA observations, made during 2009 and 2010, also measured Cygnus X-1's movement through our Galaxy. That movement, the scientists, said, is too slow for the black hole to have been produced by a supernova explosion. Such an explosion would have given the object a "kick" to a much higher speed.

"There are suggestions that this black hole could have been formed without a supernova explosion, and our results support those suggestions," Reid said.

Reid, Orosz, and Lijun Gou, also of CfA, were the lead authors of three papers on Cygnus X-1 published in the Astrophysical Journal Letters.

The VLBA, dedicated in 1993, uses ten, 25-meter-diameter dish antennas distributed from Hawaii to St. Croix in the Caribbean. It is operated from the NRAO's Domenici Science Operations Center in Socorro, NM. All ten antennas work together as a single telescope with the greatest resolving power available to astronomy. This unique capability has produced landmark contributions to numerous scientific fields, ranging from Earth tectonics, climate research, and spacecraft navigation to cosmology.

Ongoing upgrades in electronics and computing have enhanced the VLBA's capabilities. With improvements now nearing completion, the VLBA will be as much as 5,000 times more powerful as a scientific tool than the original VLBA of 1993.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>