Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists developing intelligent harvesting robot to save farms up to £100,000 a year

13.08.2009
Researchers at the National Physical Laboratory (NPL) in Teddington have developed imaging technology to be used in an intelligent harvesting machine that could minimise wastage and solve an impending labour shortage for UK farmers.

Annual waste for certain crops can be up to 60% - which can mean up to £100,000 of lost revenue for an average farm every year, according to farmers who were consulted during research. Falling number of migrant labourers means that healthy crops cannot be gathered and so farms are losing crops due to harvesting at the wrong time.

NPL 's scientists are working with KMS projects and Vegetable Harvesting Systems (VHS) to turn the technology into an intelligent harvesting machine, which can look beneath the leafy layers of a crop, identify the differing materials, and enable precise size identification. This can be used to develop a fully automated harvesting robot, which would be able to fill the gap left by the labour shortage.

The most appropriate technologies to use are radio frequencies, microwaves, terahertz and the far-infra red. These four parts of the electromagnetic spectrum all have potential to safely penetrate the crop layers and identify the size of the harvestable material for a relatively low cost. NPL has developed a methodology for crop identification and selection focusing on cauliflower crops, one of the hardest crops to measure due to the large amount of leafage that covers the vegetable.

The researchers at NPL began by modifying microwave measurement systems to measure a cauliflowers structure. A series of measurements made on real crops in the laboratory and field enabled a statistical range of measurements for precise size identification. This data is then designed into an algorithm to enable a simple size indication from a raw measurement with uncertainties. The final technology will be developed for a first generation harvester and tested in a real farming environment.

A successful demonstration of the imaging technology was given recently at the Fanuc Robotics site in Coventry, showing its huge potential for the harvesting of cauliflowers, lettuces and other similar crops. This has attracted further commercial support from G's, one of the largest lettuces grower in the UK, to take the project forward and develop the complete product, which could be available as early as next year.

Project Lead, Dr Richard Dudley, at NPL said:

"The farming industry does not have access to equipment or the skills required to operate in these parts of the electromagnetic spectrum, few places do. That is why KMS Projects and VHS came to NPL to utilise the world class expertise and equipment that we have on site to try and address this problem. Our aim is to develop a unique new automated harvesting machine that will dramatically improve productivity in the UK and global farming industry and ultimately benefit consumers through cheaper food in the supermarkets."

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>