Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK Infrared Telescope discovers ‘impossible’ binary stars

05.07.2012
A team of astronomers have used the United Kingdom Infrared Telescope (UKIRT) on Hawaii to discover four pairs of stars that orbit each other in less than 4 hours. Until now it was thought that such close-in binary stars could not exist. The new discoveries come from the telescope’s Wide Field Camera (WFCAM) Transit Survey, and appear in the journal Monthly Notices of the Royal Astronomical Society.
About half of the stars in our Milky Way galaxy are, unlike our Sun, part of a binary system in which two stars orbit each other. Most likely, the stars in these systems were formed close together and have been in orbit around each other from birth onwards. It was always thought that if binary stars form too close to each other, they would quickly merge into one single, bigger star. This was in line with many observations taken over the last three decades showing the abundant population of stellar binaries, but none with orbital periods shorter than 5 hours.

For the first time, the team have investigated binaries of red dwarfs, stars up to ten times smaller and a thousand times less luminous than the Sun. Although they form the most common type of star in the Milky Way, red dwarfs do not show up in normal surveys because of their dimness in visible light.

For the last five years, UKIRT has been monitoring the brightness of hundreds of thousands of stars, including thousands of red dwarfs, in near-infrared light, using its state-of-the-art Wide-Field Camera (WFC). This study of cool stars in the time domain has been a focus of the European (FP7) Initial Training Network ‘Rocky Planets Around Cool Stars’ (RoPACS) which studies planets and cool stars.

"To our complete surprise, we found several red dwarf binaries with orbital periods significantly shorter than the 5 hour cut-off found for Sun-like stars, something previously thought to be impossible", said Bas Nefs from Leiden Observatory in the Netherlands, and lead author of the paper. "It means that we have to rethink how these close-in binaries form and evolve."

Since stars shrink in size early in their lifetime, the fact that these very tight binaries exist means that their orbits must also have shrunk as well since their birth, otherwise the stars would have been in contact early on and have merged. However, it is not at all clear how these orbits could have shrunk by so much.

One possible answer to this riddle is that cool stars in binary systems are much more active and violent than previously thought.

It is possible that the magnetic field lines radiating out from the cool star companions get twisted and deformed as they spiral in towards each other, generating the extra activity through stellar wind, explosive flaring and star spots. Powerful magnetic activity could apply the brakes to these spinning stars, slowing them down so that they move closer together.

"Without UKIRT’s superb sensitivity, it wouldn’t have been possible to find these extraordinary pairs of red dwarfs" said David Pinfield. He adds: “The active nature of these stars and their apparently powerful magnetic fields has profound implications for the environments around red dwarfs throughout our Galaxy."

This artist's impression shows the tightest of the new record breaking binary systems. Two active M4 type red dwarfs orbit each other every 2.5 hours, as they continue to spiral inwards. Eventually they will coalesce into a single star. Credit: J. Pinfield, for the RoPACS network

MEDIA CONTACT

Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 / 4582 x214
Mob: +44 (0)794 124 8035
Email: rm@ras.org.uk
SCIENCE CONTACTS
Dr Bas Nefs
Leiden Observatory
Tel: +31 (0)71 527 8439
Mob: +31 (0)6 4159 1853
nefs@strw.leidenuniv.nl
http://www.strw.leidenuniv.nl
Dr Jayne Birkby
Leiden Observatory
Tel: +31 (0)71527 5832
birkby@strw.leidenuniv.nl
Dr David Pinfield
University of Hertfordshire
Leads the European ROPACS network: http://star.herts.ac.uk/RoPACS/ and is co-PI of the WFCAM Transit Survey (WTS).
Tel: +44 (0)1707 284171
d.j.pinfield@herts.ac.uk
Dr Simon Hodgkin
Institute of Astronomy
University of Cambridge
(Co-PI of WTS)
Tel: +44 (0)1223 766657
sth@ast.cam.ac.uk
(http://www.ast.cam.ac.uk/).
FURTHER INFORMATION
The team publish their work in the paper, “Four ultra-short period eclipsing M-dwarf binaries in the WFCAM Transit Survey”, S. V. Nefs et al, Monthly Notices of the Royal Astronomical Society, in press. A preprint of the paper can be downloaded from http://arxiv.org/abs/1206.1200

With a 3.8 metre diameter mirror, the UK Infrared Telescope (UKIRT: http://www.jach.hawaii.edu/UKIRT/) is the second largest dedicated infrared telescope in the world. Sited at an altitude of 4200 m on the top of the volcano Mauna Kea on the island of Hawaii, it began operations in 1979. UKIRT is carrying out the UKIRT Deep Sky Survey (UKIDSS: http://www.ukidss.org/) searching for objects from nearby brown dwarfs to distant quasars. In 2012 the UKIDSS team received the RAS Group Award.

The Royal Astronomical Society (RAS, www.ras.org.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3500 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

Follow the RAS on Twitter via @royalastrosoc

Robert Massey | alfa
Further information:
http://www.ras.org.uk

Further reports about: Astronomical Camera Milky Way Ras Sun TRANSIT Telescope WFCAM WTS binary star binary system infrared light magnetic field red dwarf

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>