Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

13.04.2012
University of Florida astronomers have found compelling evidence for two low-mass planets orbiting the nearby star Fomalhaut, just 25 light years from Earth.
Twice as massive as the sun and 20 times brighter, Fomalhaut is surrounded by a ring of dust and debris, making it a favorite system for astronomers to study and a natural laboratory for testing planet formation theories.

In 2008, images of Fomalhaut taken by the Hubble Space Telescope led to the discovery of “Fomalhaut b,” the first extra solar planet to be directly detected in visible light. At the time, astronomers believed it to be a giant planet, akin to Jupiter or Saturn, but later infrared images failed to detect the planet, meaning that it had to be smaller than Saturn.

UF astronomers, along with scientists from the new Atacama Large Millimeter Array in Chile, known as ALMA, and the National Radio Astronomy Observatory, used ALMA’s superior resolution and sensitivity to study the system in unprecedented detail. Their results indicate that there are not one, but two planets, with masses between that of Mars and a few times larger than Earth, working together to shape the ring of dust.
The new study reveals that the ring is sharply truncated in the inner and outer edges and is only about 16 astronomical units, or AU, wide, or about 16 times the distance between the Earth and the sun. That may seem large, but the center of the ring is about 140 AU, making the ring relatively very narrow. It also finds that the ring is vertically thin, about one-seventh as tall as it is wide. Those properties give important clues to explain the planetary system of Fomalhaut.

The results are described in a paper to appear this month in the Astrophysical Journal Letters.

“Combining ALMA observations of the ring’s shape with computer models, we can place very tight limits on the mass and orbit of any planet near the ring.” said Aaron Boley, a Sagan Postdoctoral Fellow at UF and leader of the study. “The masses of the planets must be small so they do not destroy the ring, but their masses cannot be too low or they would not shape the ring.”

Although Fomalhaut is a much hotter star than the sun, the planets are so far from their host star that they are among the coldest planets known around a normal star. They are thought to be low-mass bodies, but astronomers do not have enough data to tell whether they have a significant amount of hydrogen gas or are mostly rock and ice.

“ALMA observations show that Fomalhaut’s ring is even more narrow and thinner than previously known,” said Matthew Payne, an astronomer at the University of Florida who contributed to the study. “Fomalhaut b alone only explains the ring’s sharp inner edge. Our analysis suggests that two planets, one interior and one exterior, are shepherding the ring, analogous to how Uranus’ moons Cordelia and Ophelia confine Uranus’ brightest ring.”

The Atacama Large Millimeter/submillimeter Array, located in the Atacama Desert of northern Chile at an altitude of 16,400 feet is the largest astronomical project in existence. Still under construction, ALMA began scientific operations in September.

“ALMA may still be under construction, but it has already proved to be the world’s most powerful telescope for observing the universe at millimeter and submillimeter wavelengths of light.” said Stuartt Corder, an astronomer at the National Radio Astronomy Observatory and co-author of the study.

“Once ALMA is completed, we will be able to study systems like Fomalhaut with even greater detail, and see through the veil of dust that hides the early stages of planet formation,” said co-author Bill Dent, an astronomer at ALMA.

This research was supported by the NASA Sagan Fellowship Program, the National Radio Astronomy Student Observing Support Program and the University of Florida’s College of Liberal Arts and Sciences. The Joint ALMA Observatory is a partnership of the European Organization for Astronomical Research in the Southern Hemisphere, the National Astronomical Observatory of Japan (on behalf of the National Institutes of Natural Sciences and Academia Sinica), and the NRAO (managed by Associated Universities, Inc. on behalf of the NSF and the National Research Council of Canada) in cooperation with the Republic of Chile.
Credits
Writer Javier Barbuzano, jbarbuzano@astro.ufl.edu
Source Aaron Boley, aaron.boley@astro.ufl.edu

Aaron Boley | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Riddle of matter remains unsolved: Proton and antiproton share fundamental properties
19.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>