Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researchers make headway in quantum information transfer via nanomechanical coupling

24.09.2013
Fiber optics has made communication faster than ever, but the next step involves a quantum leap –– literally. In order to improve the security of the transfer of information, scientists are working on how to translate electrical quantum states to optical quantum states in a way that would enable ultrafast, quantum-encrypted communications.

A UC Santa Barbara research team has demonstrated the first and arguably most challenging step in the process. The paper, published in Nature Physics, describes a nanomechanical transducer that provides strong and coherent coupling between microwave signals and optical photons. In other words, the transducer is an effective conduit for translating electrical signals (microwaves) into light (photons).


This is a schematic of electro-optomechanical transduction in the piezoelectric optomechanical crystal.

Credit: Joerg Bochmann & Amit Vainsencher, UCSB

Today's high-speed Internet converts electrical signals to light and sends it through optical fibers, but accomplishing this with quantum information is one of the great challenges in quantum physics. If realized, this would enable secure communication and even quantum teleportation, a process by which quantum information can be transmitted from one location to another.

"There's this big effort going on in science now to construct computers and networks that work on the principles of quantum physics," says lead author Jörg Bochmann, a postdoctoral scholar in UCSB's Department of Physics. "And we have found that there actually is a way to translate electrical quantum states to optical quantum states."

The new paper outlines the concept and presents a prototype device, which uses an optomechanical crystal implemented in a piezoelectric material in a way that is compatible with superconducting qubits, quantum analogs of classical bits. Operating the device at the single phonon limit, the scientists were able generate coherent interactions between electrical signals, very high frequency mechanical vibrations, and optical signals.

Although the first prototype of the transducer has not been operated in the quantum realm, that is, in fact, the next step for the research effort. "In this paper, we're characterizing the system using classical electrical and optical signals and find that the essential parameters look very promising," says Bochmann. "In the next step, we would have to actually input quantum signals from the electrical side and then check whether the quantum properties are preserved in the light."

According to the authors, their prototype transducer is fully compatible with superconducting quantum circuits and is well suited for cryogenic operation. "The coupled dynamics of the system should be the same at low temperatures as in our room temperature measurements, albeit with a lower thermal background," said co-author Andrew Cleland, a professor of physics and associate director of the California Nanosystems Institute at UCSB. "Genuine quantum features and non-classical mechanical states will emerge when we couple a superconducting qubit to the transducer.

"We believe that combining optomechanics with superconducting quantum devices will enable a new generation of on-chip quantum devices with unique capabilities, as well as opening an exciting pathway for realizing entangled networks of electronic and photonic quantum systems," Cleland said.

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>