Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB physicists make strides in understanding quantum entanglement

17.12.2012
While some theoretical physicists make predictions about astrophysics and the behavior of stars and galaxies, others work in the realm of the very small, which includes quantum physics. Such is the case at UC Santa Barbara, where theoretical physicists at the Kavli Institute for Theoretical Physics (KITP) cover the range of questions in physics.

Recently, theoretical physicists at KITP have made important strides in studying a concept in quantum physics called quantum entanglement, in which electron spins are entangled with each other. Using computers to calculate the extreme version of quantum entanglement –– how the spin of every electron in certain electronic materials could be entangled with another electron's spin –– the research team found a way to predict this characteristic. Future applications of the research are expected to benefit fields such as information technology.

"Quantum entanglement is a strange and non-intuitive aspect of the quantum theory of matter, which has puzzled and intrigued physicists since the earliest days of the quantum theory," said Leon Balents, senior author of a recent paper on this topic published in the journal Nature Physics. Balents is a professor of physics and a permanent member of KITP.

Quantum entanglement represents the extent to which measurement of one part of a system affects the state of another; for example, measurement of one electron influences the state of another that may be far away, explained Balents. In recent years, scientists have realized that entanglement of electrons is present in varying degrees in solid materials. Taking this notion to the extreme is the "quantum spin liquid," a state of matter in which every electron spin is entangled with another.

Balents said that quantum spin liquids are being sought in experiments on natural and artificial minerals. A key question posed by physicists is how to calculate theoretically which materials are quantum spin liquids. "In our paper, we provide an answer to this question, showing that a precise quantitative measure of 'long-range' entanglement can be calculated for realistic models of electronic materials," said Balents.

"Our results provide a smoking gun signature of this special type of entanglement that determines whether or not a given material is a quantum spin liquid," explained Balents. The results prove that an emblematic example of this type of problem –– material with electron spins residing on the "kagome lattice" –– is indeed a quantum spin liquid, according to Balents. The kagome lattice is a pattern of electron spins named after a type of Japanese fishing basket that this arrangement of spins resembles.

"We expect the technique we developed to have broad applications in the search for these unique quantum states, which in the future may have remarkable applications in information technologies," said Balents.

Hong-Chen Jiang, postdoctoral fellow with KITP, and Zhenghan Wang, a researcher with Microsoft Station Q at UCSB, are co-authors of the paper.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>