Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA 'dark matter' conference highlights new research on mysterious cosmic substance

26.02.2010
UCLA scientists to discuss XENON100, the newest dark matter detector

Dark matter, for more than 70 years as mysterious and unknowable a subject to science as the legendary island of Atlantis has been to history, is bringing 140 scientists from the U.S., Europe and Asia to the Marriott Hotel in Marina del Rey for the ninth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe. The three-day conference runs through Friday, Feb. 26.

"Dark matter is one of the last great frontiers in science," said David B. Cline, UCLA professor of physics, high-energy astrophysicist and symposium organizer. "Once we know what it really is, we will break through into a new realm of nature. It's going to be an entirely new era for science, it's going to pose fascinating new questions, it's going to be exciting."

First proposed in the 1930s by the late California Institute of Technology scientist Fritz Zwicky to explain why some galaxies appeared more ponderous than their luminosity would suggest, dark matter is thought to account for almost 25 percent of the universe today. Just 5 percent is made up of visible, tangible matter; the remaining 70 percent is in the equally baffling form of dark energy. Despite its abundance, uncontested reality and ubiquity, dark matter has so far evaded direct observation.

At the symposium, scientists will discuss a range of topics, from tantalizing hints of dark matter gleaned from a dozen or so experiments currently underway around the world, to more sophisticated detectors that will perhaps reveal at last the true identity of this mysterious stuff, to considerations of a still deeper and more profound stratum in nature.

UCLA professor of physics Katsushi Arisaka and Hanguo Wang, a UCLA physics researcher, will describe the newest dark matter detector, XENON100, which UCLA has been operating beneath Italy's Gran Sasso mountain, some 70 miles west of Rome, in partnership principally with Columbia University and Rice University, along with seven other institutions in Switzerland, Portugal, Italy, Germany, France, Japan and China.

The XENON100 detector is an instrumented vat, about the size of a stockpot — 12 inches in diameter and 12 inches tall — holding 220 pounds of frigid liquid xenon. It is, in effect, a traffic surveillance camera that can record the occasional, if very infrequent, collision between a dark matter particle and a xenon atom.

There is a certain irony to this, given that xenon is a heavy, noble gas that does not react easily with other elements and yet is the target of choice for subatomic particles that themselves are very aloof. But both are large entities in their respective realms, the physicists reason, and so are bound to collide sooner or later. And when they do, the UCLA team believes the XENON100 detector will capture the event through signals that only a xenon–dark matter collision can produce.

Dark matter is widely thought to be a kind of massive elementary particle that interacts weakly, when it interacts at all, with ordinary matter; physicists call these particles WIMPs, for weakly interacting massive particles.

WIMPs are everywhere throughout the universe, streaming constantly through the Milky Way galaxy, the solar system, Earth's atmosphere, mountains — and even cylinders filled with liquid xenon. And when the occasional WIMP does bump into a xenon molecule, the xenon atom recoils and emits a tiny flash of scintillation, or light. The bump also causes the struck xenon to give off a small burst of ionizing radiation.

Both signals fall on an array of small, sensitive sensors — "avalanche photon-intensifying devices," so-called because a single scintillating flash sets off a cascade of electrons into the instrument's recorders. Imagine the sound of a pin dropped on a marble counter instantly transformed into booms of a bass drum and you begin to appreciate the effectiveness of these sensors.

Cline praised Arisaka and Wang for the way they integrated these sensors into the overall XENON100 detector, saying that the devices can discriminate between those signals triggered by dark matter and those triggered by gamma rays and naturally occurring radioactive elements in Gran Sasso mountain.

As proud as they are of the XENON100 instrument and its performance to date — indeed, even before they know definitively if they have caught sight of one or more WIMPs — the UCLA team is working on bigger, more sensitive dark matter detectors. A XENON1000 device, 10 times larger than the one now operating, would provide a 100-times larger arena, and much greater opportunities, for WIMPs and xenon to collide, for confirming test results to be gathered and for the unraveling of dark matter to begin.

For more information about the UCLA symposium, visit www.physics.ucla.edu/hep/dm10/index.html.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>