Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA 'dark matter' conference highlights new research on mysterious cosmic substance

26.02.2010
UCLA scientists to discuss XENON100, the newest dark matter detector

Dark matter, for more than 70 years as mysterious and unknowable a subject to science as the legendary island of Atlantis has been to history, is bringing 140 scientists from the U.S., Europe and Asia to the Marriott Hotel in Marina del Rey for the ninth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe. The three-day conference runs through Friday, Feb. 26.

"Dark matter is one of the last great frontiers in science," said David B. Cline, UCLA professor of physics, high-energy astrophysicist and symposium organizer. "Once we know what it really is, we will break through into a new realm of nature. It's going to be an entirely new era for science, it's going to pose fascinating new questions, it's going to be exciting."

First proposed in the 1930s by the late California Institute of Technology scientist Fritz Zwicky to explain why some galaxies appeared more ponderous than their luminosity would suggest, dark matter is thought to account for almost 25 percent of the universe today. Just 5 percent is made up of visible, tangible matter; the remaining 70 percent is in the equally baffling form of dark energy. Despite its abundance, uncontested reality and ubiquity, dark matter has so far evaded direct observation.

At the symposium, scientists will discuss a range of topics, from tantalizing hints of dark matter gleaned from a dozen or so experiments currently underway around the world, to more sophisticated detectors that will perhaps reveal at last the true identity of this mysterious stuff, to considerations of a still deeper and more profound stratum in nature.

UCLA professor of physics Katsushi Arisaka and Hanguo Wang, a UCLA physics researcher, will describe the newest dark matter detector, XENON100, which UCLA has been operating beneath Italy's Gran Sasso mountain, some 70 miles west of Rome, in partnership principally with Columbia University and Rice University, along with seven other institutions in Switzerland, Portugal, Italy, Germany, France, Japan and China.

The XENON100 detector is an instrumented vat, about the size of a stockpot — 12 inches in diameter and 12 inches tall — holding 220 pounds of frigid liquid xenon. It is, in effect, a traffic surveillance camera that can record the occasional, if very infrequent, collision between a dark matter particle and a xenon atom.

There is a certain irony to this, given that xenon is a heavy, noble gas that does not react easily with other elements and yet is the target of choice for subatomic particles that themselves are very aloof. But both are large entities in their respective realms, the physicists reason, and so are bound to collide sooner or later. And when they do, the UCLA team believes the XENON100 detector will capture the event through signals that only a xenon–dark matter collision can produce.

Dark matter is widely thought to be a kind of massive elementary particle that interacts weakly, when it interacts at all, with ordinary matter; physicists call these particles WIMPs, for weakly interacting massive particles.

WIMPs are everywhere throughout the universe, streaming constantly through the Milky Way galaxy, the solar system, Earth's atmosphere, mountains — and even cylinders filled with liquid xenon. And when the occasional WIMP does bump into a xenon molecule, the xenon atom recoils and emits a tiny flash of scintillation, or light. The bump also causes the struck xenon to give off a small burst of ionizing radiation.

Both signals fall on an array of small, sensitive sensors — "avalanche photon-intensifying devices," so-called because a single scintillating flash sets off a cascade of electrons into the instrument's recorders. Imagine the sound of a pin dropped on a marble counter instantly transformed into booms of a bass drum and you begin to appreciate the effectiveness of these sensors.

Cline praised Arisaka and Wang for the way they integrated these sensors into the overall XENON100 detector, saying that the devices can discriminate between those signals triggered by dark matter and those triggered by gamma rays and naturally occurring radioactive elements in Gran Sasso mountain.

As proud as they are of the XENON100 instrument and its performance to date — indeed, even before they know definitively if they have caught sight of one or more WIMPs — the UCLA team is working on bigger, more sensitive dark matter detectors. A XENON1000 device, 10 times larger than the one now operating, would provide a 100-times larger arena, and much greater opportunities, for WIMPs and xenon to collide, for confirming test results to be gathered and for the unraveling of dark matter to begin.

For more information about the UCLA symposium, visit www.physics.ucla.edu/hep/dm10/index.html.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>