Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UB Research Outlines Mathematical Framework That Could Help Convert "Junk" Energy Into Useful Power

21.07.2011
A University at Buffalo-led research team has developed a mathematical framework that could one day form the basis of technologies that turn road vibrations, airport runway noise and other "junk" energy into useful power.

The concept all begins with a granular system comprising a chain of equal-sized particles -- spheres, for instance -- that touch one another.

In a paper in Physical Review E this June, UB theoretical physicist Surajit Sen and colleagues describe how altering the shape of grain-to-grain contact areas between the particles dramatically changes how energy propagates through the system.

Under "normal" circumstances, when the particles are perfect spheres, exerting force on the first sphere in the chain causes energy to travel through the spheres as a compact bundle of energy between 3 to 5 particle diameters wide, at a rate set by Hertz's Law.

But Sen and his collaborators have discovered that by altering the shape of the surface area of each particle where it presses against the next, it is possible to change how the energy moves. While this finding is yet to be demonstrated experimentally, Sen said that "mathematically, it's correct. We have proven it."

"What this work means is that by tweaking force propagation from one grain to another, we can potentially channel energy in controllable ways, which includes slowing down how energy moves, varying the space across which it moves and potentially even holding some of it down," said Sen, a professor of physics whose partners on the project included former graduate student Diankang Sun, now of New Mexico Resonance in Albuquerque, and Chiara Daraio, a professor at the California Institute of Technology.

"What we have managed to accomplish is we have broadened Hertz's theory with some extremely simple modifications," Sen said. "If I hit one end of the chain of particles, the perturbation will travel as an energy bundle. Now we can tune and control that energy." This modification to Heinrich Hertz's theory comes 130 years after Hertz's work was published, Sen said.

While the Physical Review E paper describes a granular, mechanical system, Sen believes the mathematical framework his team developed could be realized using electrical circuit systems as well. One practical application he foresees from such technology: "We could have chips that take energy from road vibrations, runway noise from airports -- energy that we are not able to make use of very well -- and convert it into pulses, packets of electrical energy, that become useful power."

"You give me noise," Sen said, "I give you organized bundles."

The study was supported by the Army Research Office and National Science Foundation.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>