Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New twist on ancient math problem could improve medicine, microelectronics

11.05.2012
A hidden facet of a math problem that goes back to Sanskrit scrolls has just been exposed by nanotechnology researchers at the University of Michigan and the University of Connecticut.

It turns out we've been missing a version of the famous "packing problem," and its new guise could have implications for cancer treatment, secure wireless networks, microelectronics and demolitions, the researchers say.

Called the "filling problem," it seeks the best way to cover the inside of an object with a particular shape, such as filling a triangle with discs of varying sizes. Unlike the traditional packing problem, the discs can overlap. It also differs from the "covering problem" because the discs can't extend beyond the triangle's boundaries.

"Besides introducing the problem, we also provided a solution in two dimensions," said Sharon Glotzer, U-M professor of chemical engineering.

That solution makes it immediately applicable to treating tumors using fewer shots with radiation beams or speeding up the manufacturing of silicon chips for microprocessors.

The key to solutions in any dimension is to find a shape's "skeleton," said Carolyn Phillips, a postdoctoral fellow at Argonne National Laboratory who recently completed her Ph.D. in Glotzer's group and solved the problem as part of her dissertation.

"Every shape you want to fill has a backbone that goes through the center of the shape, like a spine," she said.

For a pentagon, the skeleton looks like a stick-drawing of a starfish. The discs that fill the pentagon best will always have their centers on one of those lines.

Junctions between lines in the skeleton are special points that Glotzer's team refers to as "traps." The pentagon only has one trap, right at its center, but more complicated shapes can contain multiple traps. In most optimal solutions, each trap has a disc centered over it, Phillips said.

Other discs in the pattern change size and move around, depending on how many discs are allowed, but those over the traps are always the same. Phillips suspects that if a design uses enough discs, every trap will have a disc centered over it.

In their paper, published online today in Physical Review Letters, the researchers report the rules for how to find the ideal size and spacing of the discs that fill a shape. In the future, they expect to reveal an algorithm that can take the desired shape and the number of discs, or the shape and percentage of the area to be filled, and spit out the best pattern to fill it.

Extending the approach into three dimensions, Glotzer proposes that it could decide the placement of wireless routers in a building where the signal must not be available to a potential hacker in the parking lot. Alternatively, it could help demolition workers to set off precision explosions, ensuring that the blast covers the desired region but doesn't extend beyond a building's outer walls.

Phillips expects filling solutions to be scientifically useful as well. Glotzer's team developed the new problem by trying to find a way to represent many-sided shapes for their computer models of nanoparticles. In addition to nanotechnology, biology and medicine often need models for complex shapes, such as those of proteins.

"You don't want to model every single one of the thousands of atoms that make up this protein," Phillips said. "You want a minimal model that gives the shape, allowing the proteins to interact in a lock-and-key way, as they do in nature."

The filling approach may prove a perfect fit for a variety of fields.

The paper is titled "Optimal filling of shapes." Funding for this study included grants from the Department of Energy and the Department of Defense

Sharon Glotzer: http://che.engin.umich.edu/people/glotzer.html

Katherine McAlpine | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>