Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree-Dwelling Mammals Climb To The Heights Of Longevity

25.02.2010
The squirrels littering your lawn with acorns as they bound overhead will live to plague your yard longer than the ones that aerate it with their burrows, according to a University of Illinois study.

Scientists know from previous studies that flying birds and bats live longer than earthbound animals of the same size. Milena Shattuck and Scott Williams, doctoral candidates in anthropology, decided to take a closer look at the relationship between habitat and lifespan in mammals, comparing terrestrial and treetop life. They published their findings in the Proceedings of the National Academy of Sciences.

The two hypothesized that, like flight, treetop or arboreal dwelling reduces a species’ extrinsic mortality – death from predation, disease and environmental hazards; that is, causes other than age.

“One of the predictions of the evolutionary theory of aging is that if you can reduce sources of extrinsic mortality, you’ll end up exposing some of the late-acting mutations to natural selection, and therefore evolve longer lifespans,” Williams said.

Williams and Shattuck found that for arboreality, the theory holds. Mammals who spend the majority of their time up a tree enjoy longevity over those who scurry along the ground. The pattern holds consistent both on the large scale among all mammals, and also in specific classes the pair studied, such as tree squirrels versus ground squirrels.

However, the pair also uncovered two classes of mammals that buck the longevity trend – marsupials, such as kangaroos, and primates, including ground walkers such as gorillas and humans and their branch-swinging counterparts. Aloft or not, these groups show no significant difference, although primates in general tend to lead long lives.

“These are the exceptions that prove the rule,” Shattuck said. “The defining feature that seems to connect those two groups is a long history of arboreal ancestors. Other mammals started out terrestrially, and separate groups developed arboreality independently. Marsupials and primates seem to have started off in the trees, and then the terrestrial marsupials and primates have descended from arboreal ancestors.”

This arboreal ancestry may partially explain why humans have such a long lifespan relative to other mammals. As primates descended from the trees, they had to develop new strategies for survival on the ground. Terrestrial primates, including humans, tend to be larger and more social, providing some security from predators and environmental obstacles.

“It’s interesting to think that humans, at least in part, live so long and do well because we had this evolutionary history when we were in the trees,” said Shattuck. “And now, we have the intervention of culture and medicine to help extend that further.”

This work was sponsored by a Cognitive Science/Artifical Intelligence Grant from the U. of I.’s Beckman Institute for Advanced Science and Technology.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: CLIMB Cognitive Science HEIGHTS Science TV Tree-Dwelling longevity mammals

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>