Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree-Dwelling Mammals Climb To The Heights Of Longevity

25.02.2010
The squirrels littering your lawn with acorns as they bound overhead will live to plague your yard longer than the ones that aerate it with their burrows, according to a University of Illinois study.

Scientists know from previous studies that flying birds and bats live longer than earthbound animals of the same size. Milena Shattuck and Scott Williams, doctoral candidates in anthropology, decided to take a closer look at the relationship between habitat and lifespan in mammals, comparing terrestrial and treetop life. They published their findings in the Proceedings of the National Academy of Sciences.

The two hypothesized that, like flight, treetop or arboreal dwelling reduces a species’ extrinsic mortality – death from predation, disease and environmental hazards; that is, causes other than age.

“One of the predictions of the evolutionary theory of aging is that if you can reduce sources of extrinsic mortality, you’ll end up exposing some of the late-acting mutations to natural selection, and therefore evolve longer lifespans,” Williams said.

Williams and Shattuck found that for arboreality, the theory holds. Mammals who spend the majority of their time up a tree enjoy longevity over those who scurry along the ground. The pattern holds consistent both on the large scale among all mammals, and also in specific classes the pair studied, such as tree squirrels versus ground squirrels.

However, the pair also uncovered two classes of mammals that buck the longevity trend – marsupials, such as kangaroos, and primates, including ground walkers such as gorillas and humans and their branch-swinging counterparts. Aloft or not, these groups show no significant difference, although primates in general tend to lead long lives.

“These are the exceptions that prove the rule,” Shattuck said. “The defining feature that seems to connect those two groups is a long history of arboreal ancestors. Other mammals started out terrestrially, and separate groups developed arboreality independently. Marsupials and primates seem to have started off in the trees, and then the terrestrial marsupials and primates have descended from arboreal ancestors.”

This arboreal ancestry may partially explain why humans have such a long lifespan relative to other mammals. As primates descended from the trees, they had to develop new strategies for survival on the ground. Terrestrial primates, including humans, tend to be larger and more social, providing some security from predators and environmental obstacles.

“It’s interesting to think that humans, at least in part, live so long and do well because we had this evolutionary history when we were in the trees,” said Shattuck. “And now, we have the intervention of culture and medicine to help extend that further.”

This work was sponsored by a Cognitive Science/Artifical Intelligence Grant from the U. of I.’s Beckman Institute for Advanced Science and Technology.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: CLIMB Cognitive Science HEIGHTS Science TV Tree-Dwelling longevity mammals

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>