Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thirty Meter Telescope Selects Mauna Kea

23.07.2009
After careful evaluation and comparison between two outstanding candidate sites—Mauna Kea in Hawai‘i and Cerro Armazones in Chile—the board of directors of the TMT Observatory Corporation has selected Mauna Kea as the preferred site for the Thirty Meter Telescope. The TMT will be the most capable and advanced telescope ever constructed.

When completed in 2018, the TMT will enable astronomers to detect and study light from the earliest stars and galaxies, analyze the formation of planets around nearby stars, and test many of the fundamental laws of physics.

To achieve these outstanding results, the TMT will integrate the latest innovations in precision control, segmented mirror design, and adaptive optics to correct for the blurring effect of Earth’s atmosphere, enabling the TMT to study the Universe as clearly as if the telescope were in space. Building on the success of the twin Keck telescopes, the core technology of TMT will be a 30-meter primary mirror composed of 492 segments. This will give TMT nine times the collecting area of today’s largest optical telescopes.

To ensure that the site chosen for TMT would enable the telescope to achieve its full potential, a global satellite survey was conducted, from which five outstanding candidate sites were chosen for further ground-based studies of atmospheric stability, wind patterns, temperature variation, and other meteorological characteristics that would affect the performance of the telescope.

Based on these results and extensive studies, Mauna Kea and Cerro Armazones were selected in May 2008 for further evaluation and environmental, financial, and cultural impact studies. The TMT board used the results from these meticulous research campaigns to help guide the final site-selection process.

"It was clear from all the information we received that both sites were among the best in the world for astronomical research,” said Edward Stone, Caltech's Morrisroe Professor of Physics and vice chairman of the TMT board. “Each has superb observing conditions and would enable TMT to achieve its full potential of unlocking the mysteries of the Universe.”

“In the final analysis, the board selected Mauna Kea as the site for TMT. The atmospheric conditions, low average temperatures, and very low humidity will open an exciting new discovery space using adaptive optics and infrared observations. Working in concert with the partners’ existing facilities on Mauna Kea will further expand the opportunities for discoveries,” said Stone.

Henry Yang, TMT board chair and chancellor of the University of California at Santa Barbara, expressed excitement at this decision. "Our scientists and engineers have been designing and building the key components that will go into the telescope. By deciding to build on Mauna Kea, the TMT board has given a clear signal that we are ready to move forward and begin building in earnest as soon as all the necessary approvals are in place. I want to thank the Moore Foundation for its visionary support. I also want to thank our scientific colleagues and the coalition of community members, educators, businesses, unions, political leaders, and stakeholders in Hawai‘i who have brought us to the point of this site selection. The board expresses a strong commitment to respect the long history and cultural significance of Mauna Kea to the Hawaiian people, and has committed annual funding for local community benefits and education in Hawai‘i.”

Before construction can begin on Mauna Kea, the TMT must submit and have approved an application for a Conservation District Use Permit (CDUP) to the Hawaiian Department of Land and Natural Resources. This will be done through the community-based Office of Mauna Kea Management, which oversees the Mauna Kea summit as part of the University of Hawai'i at Hilo.

"We are very grateful for the support that TMT has received from both the people and governments of Hawai‘i and Chile during the site-selection process," said Professor Ray Carlberg, the Canadian Large Optical Telescope project director and a TMT board member. “We are excited about the prospect of being the first of the next generation of extremely large telescopes.”

The TMT project is an international partnership among the California Institute of Technology, the University of California, and ACURA, an organization of Canadian universities. The National Astronomical Observatory of Japan (NAOJ) joined TMT as a Collaborating Institution in 2008.

“The selection of Hawai‘i as the site for the Thirty Meter Telescope will greatly strengthen international cooperation in astronomy. The synergy between TMT and the highly successful Subaru Telescope already on Mauna Kea will lead to many further research breakthroughs,” said Professor Masanori Iye, the Extremely Large Telescope Project Director of the NAOJ.

The TMT project has completed its $77 million design development phase with primary financial support of $50 million from the Gordon and Betty Moore Foundation and $22 million from Canada. The project has now entered the early construction phase thanks to an additional $200 million pledge from the Gordon and Betty Moore Foundation. Caltech and the University of California have agreed to raise matching funds of $50 million to bring the construction total to $300 million, and the Canadian partners propose to supply the enclosure, the telescope structure, and the first light adaptive optics.

TMT gratefully acknowledges support for design and development from the following: Gordon and Betty Moore Foundation, Canada Foundation for Innovation, Ontario Ministry of Research and Innovation, National Research Council of Canada, Natural Sciences and Engineering Research Council of Canada, British Columbia Knowledge Development Fund, Association of Universities for Research in Astronomy, and the National Science Foundation (USA).

Charles Blue | Newswise Science News
Further information:
http://www.tmt.org

Further reports about: Canadian Light Source Foundation Kea Mauna NAOJ Observatory Science TV TMT Telescope Universe nearby star

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>