Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thirty Meter Telescope Selects Mauna Kea

23.07.2009
After careful evaluation and comparison between two outstanding candidate sites—Mauna Kea in Hawai‘i and Cerro Armazones in Chile—the board of directors of the TMT Observatory Corporation has selected Mauna Kea as the preferred site for the Thirty Meter Telescope. The TMT will be the most capable and advanced telescope ever constructed.

When completed in 2018, the TMT will enable astronomers to detect and study light from the earliest stars and galaxies, analyze the formation of planets around nearby stars, and test many of the fundamental laws of physics.

To achieve these outstanding results, the TMT will integrate the latest innovations in precision control, segmented mirror design, and adaptive optics to correct for the blurring effect of Earth’s atmosphere, enabling the TMT to study the Universe as clearly as if the telescope were in space. Building on the success of the twin Keck telescopes, the core technology of TMT will be a 30-meter primary mirror composed of 492 segments. This will give TMT nine times the collecting area of today’s largest optical telescopes.

To ensure that the site chosen for TMT would enable the telescope to achieve its full potential, a global satellite survey was conducted, from which five outstanding candidate sites were chosen for further ground-based studies of atmospheric stability, wind patterns, temperature variation, and other meteorological characteristics that would affect the performance of the telescope.

Based on these results and extensive studies, Mauna Kea and Cerro Armazones were selected in May 2008 for further evaluation and environmental, financial, and cultural impact studies. The TMT board used the results from these meticulous research campaigns to help guide the final site-selection process.

"It was clear from all the information we received that both sites were among the best in the world for astronomical research,” said Edward Stone, Caltech's Morrisroe Professor of Physics and vice chairman of the TMT board. “Each has superb observing conditions and would enable TMT to achieve its full potential of unlocking the mysteries of the Universe.”

“In the final analysis, the board selected Mauna Kea as the site for TMT. The atmospheric conditions, low average temperatures, and very low humidity will open an exciting new discovery space using adaptive optics and infrared observations. Working in concert with the partners’ existing facilities on Mauna Kea will further expand the opportunities for discoveries,” said Stone.

Henry Yang, TMT board chair and chancellor of the University of California at Santa Barbara, expressed excitement at this decision. "Our scientists and engineers have been designing and building the key components that will go into the telescope. By deciding to build on Mauna Kea, the TMT board has given a clear signal that we are ready to move forward and begin building in earnest as soon as all the necessary approvals are in place. I want to thank the Moore Foundation for its visionary support. I also want to thank our scientific colleagues and the coalition of community members, educators, businesses, unions, political leaders, and stakeholders in Hawai‘i who have brought us to the point of this site selection. The board expresses a strong commitment to respect the long history and cultural significance of Mauna Kea to the Hawaiian people, and has committed annual funding for local community benefits and education in Hawai‘i.”

Before construction can begin on Mauna Kea, the TMT must submit and have approved an application for a Conservation District Use Permit (CDUP) to the Hawaiian Department of Land and Natural Resources. This will be done through the community-based Office of Mauna Kea Management, which oversees the Mauna Kea summit as part of the University of Hawai'i at Hilo.

"We are very grateful for the support that TMT has received from both the people and governments of Hawai‘i and Chile during the site-selection process," said Professor Ray Carlberg, the Canadian Large Optical Telescope project director and a TMT board member. “We are excited about the prospect of being the first of the next generation of extremely large telescopes.”

The TMT project is an international partnership among the California Institute of Technology, the University of California, and ACURA, an organization of Canadian universities. The National Astronomical Observatory of Japan (NAOJ) joined TMT as a Collaborating Institution in 2008.

“The selection of Hawai‘i as the site for the Thirty Meter Telescope will greatly strengthen international cooperation in astronomy. The synergy between TMT and the highly successful Subaru Telescope already on Mauna Kea will lead to many further research breakthroughs,” said Professor Masanori Iye, the Extremely Large Telescope Project Director of the NAOJ.

The TMT project has completed its $77 million design development phase with primary financial support of $50 million from the Gordon and Betty Moore Foundation and $22 million from Canada. The project has now entered the early construction phase thanks to an additional $200 million pledge from the Gordon and Betty Moore Foundation. Caltech and the University of California have agreed to raise matching funds of $50 million to bring the construction total to $300 million, and the Canadian partners propose to supply the enclosure, the telescope structure, and the first light adaptive optics.

TMT gratefully acknowledges support for design and development from the following: Gordon and Betty Moore Foundation, Canada Foundation for Innovation, Ontario Ministry of Research and Innovation, National Research Council of Canada, Natural Sciences and Engineering Research Council of Canada, British Columbia Knowledge Development Fund, Association of Universities for Research in Astronomy, and the National Science Foundation (USA).

Charles Blue | Newswise Science News
Further information:
http://www.tmt.org

Further reports about: Canadian Light Source Foundation Kea Mauna NAOJ Observatory Science TV TMT Telescope Universe nearby star

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>