Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz Goes Nano

10.10.2008
A forthcoming report in Nano Letters describes a breakthrough in modern microscopy: the achievement of extremely high-resolution imaging using light in the Terahertz (THz) region (wavelengths between 30 and 1000 µm).

Contrary to textbook wisdom, the unusually long illuminating wavelength of 118 µm did not at all preclude researchers from the Max-Planck-Institute of Biochemistry (MPIB) to resolve details as small as 40 nm (= 0.04 µm).

This was made possible by the use of extreme THz field concentration at the sharp tip of a scanning atomic force microscope (AFM). The THz nanoscope thus breaks the diffraction barrier by a factor of 1500, and with its 40 nm resolving power matches the needs of modern nanoscience and technology. As a first application, the researchers demonstrate the mapping of free-carriers in state-of-the-art industrial transistors of the 65 nm-technology.

The MPIB team had pioneered near-field microscopy at both visible and infrared frequencies over the last decade, enabling nanoscale resolved chemical recognition of nanostructured materials. Only recently they realized, when imaging semiconducting nanostructures of state-of-the art processor chips, the importance of using far-infrared or THz radiation (the 118 µm wavelength radiation corresponds to 2.5 THz). THz illumination offers a 100-fold increased sensitivity to the conductivity of semiconducting materials when compared to infrared light. This extreme sensitivity is difficult to achieve by any other optical microscopy technique, rendering the described microscopy technique highly desirable for quality assurance and analysis of failure mechanisms in industrially produced semiconductor nanodevices.

An external theory collaborator (Javier Aizpurua, Donostia International Physics Center, Spain) joined the MPIB team to help predicting that indeed the long-wavelength THz radiation would develop a highly concentrated field right at the end of the scanning tip. With this assurance, the MPIB team set out to illuminate their home-built near-field microscope with 2.5 THz radiation from a gas laser. Doctoral student Andreas Huber succeeded to record the first THz images with 40 nm resolution. In collaboration with Infineon Technologies AG (Jesper Wittborn, München) he applied the new microscopy technique to characterize state-of-the-art transistors of the 65 nm-technology that before had been inspected with a transmission electron microscope (TEM). Comparing THz and TEM images of the transistors, the researchers could demonstrate that all major parts of the transistor (source, drain and gate) can be seen in the THz image. Strikingly, the THz images reveal mobile carrier concentrations around 1018cm-3 (that is one mobile carrier for each 100,000 Si atoms) which are essential for functional transistor devices. Mobile carriers are a central key for the practical transistor functionality but unfortunately they are not directly visible in TEM.

Hitherto, no powerful metrology tools are available allowing for simultaneous and quantitative mapping of both materials and carrier concentrations with nanoscale resolution. Therefore, the added values of seeing and even quantifying conducting carriers opens an enormous application potential for the THz near-field microscope. In fundamental physics research of conducting materials, the non-contact, non-invasive and quantitative mapping of mobile carriers with nanoscale resolution should trigger crucial insights into open scientific questions from the areas of superconductors, low-dimensional conductors, and correlated conductors. "After 40 years of THz research in three Max-Planck-Institutes I am now looking forward to THz nanoscopy solving basic conduction puzzles such as superconductivity" says Fritz Keilmann. THz nanosopy could be furthermore an interesting tool for chemical and structural analysis of compounds and biological systems, as THz radiation is also highly sensitive to vibrations of crystal lattices and molecules. "Future improvements of our technique could allow for THz characterization of even single nanocrystals, biomolecules or electrons" says Rainer Hillenbrand, leader of the Nano-Photonics Group at MPIB and the Nanooptics Laboratory at the newly established nanoGUNE research center (San Sebastian, Spain).

The demonstrated achievement is the direct outcome of a research plan subsidized since 2003 within a Nanofutur grant of the German Federal Ministry of Education and Research endowed to Rainer Hillenbrand. The plan had already anticipated a start-up company which indeed was founded in 2007 (Neaspec GmbH).

Original publication:
A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua and R. Hillenbrand, Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices, Nano Letters, DOI: 10.1021/nl802086x (2008).
Contact:
Dr. Rainer Hillenbrand
hillenbr@biochem.mpg.de
Nanooptics Laboratory
CIC nanoGUNE Consolider
20009 Donostia - San Sebastian, Spain
and
Nano-Photonics Group
Max-Planck-Institut für Biochemie
82152 Martinsried, Germany
phone: +49 89 8578 2455

Eva-Maria Diehl | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de/hillenbrand

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>