Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz Goes Nano

10.10.2008
A forthcoming report in Nano Letters describes a breakthrough in modern microscopy: the achievement of extremely high-resolution imaging using light in the Terahertz (THz) region (wavelengths between 30 and 1000 µm).

Contrary to textbook wisdom, the unusually long illuminating wavelength of 118 µm did not at all preclude researchers from the Max-Planck-Institute of Biochemistry (MPIB) to resolve details as small as 40 nm (= 0.04 µm).

This was made possible by the use of extreme THz field concentration at the sharp tip of a scanning atomic force microscope (AFM). The THz nanoscope thus breaks the diffraction barrier by a factor of 1500, and with its 40 nm resolving power matches the needs of modern nanoscience and technology. As a first application, the researchers demonstrate the mapping of free-carriers in state-of-the-art industrial transistors of the 65 nm-technology.

The MPIB team had pioneered near-field microscopy at both visible and infrared frequencies over the last decade, enabling nanoscale resolved chemical recognition of nanostructured materials. Only recently they realized, when imaging semiconducting nanostructures of state-of-the art processor chips, the importance of using far-infrared or THz radiation (the 118 µm wavelength radiation corresponds to 2.5 THz). THz illumination offers a 100-fold increased sensitivity to the conductivity of semiconducting materials when compared to infrared light. This extreme sensitivity is difficult to achieve by any other optical microscopy technique, rendering the described microscopy technique highly desirable for quality assurance and analysis of failure mechanisms in industrially produced semiconductor nanodevices.

An external theory collaborator (Javier Aizpurua, Donostia International Physics Center, Spain) joined the MPIB team to help predicting that indeed the long-wavelength THz radiation would develop a highly concentrated field right at the end of the scanning tip. With this assurance, the MPIB team set out to illuminate their home-built near-field microscope with 2.5 THz radiation from a gas laser. Doctoral student Andreas Huber succeeded to record the first THz images with 40 nm resolution. In collaboration with Infineon Technologies AG (Jesper Wittborn, München) he applied the new microscopy technique to characterize state-of-the-art transistors of the 65 nm-technology that before had been inspected with a transmission electron microscope (TEM). Comparing THz and TEM images of the transistors, the researchers could demonstrate that all major parts of the transistor (source, drain and gate) can be seen in the THz image. Strikingly, the THz images reveal mobile carrier concentrations around 1018cm-3 (that is one mobile carrier for each 100,000 Si atoms) which are essential for functional transistor devices. Mobile carriers are a central key for the practical transistor functionality but unfortunately they are not directly visible in TEM.

Hitherto, no powerful metrology tools are available allowing for simultaneous and quantitative mapping of both materials and carrier concentrations with nanoscale resolution. Therefore, the added values of seeing and even quantifying conducting carriers opens an enormous application potential for the THz near-field microscope. In fundamental physics research of conducting materials, the non-contact, non-invasive and quantitative mapping of mobile carriers with nanoscale resolution should trigger crucial insights into open scientific questions from the areas of superconductors, low-dimensional conductors, and correlated conductors. "After 40 years of THz research in three Max-Planck-Institutes I am now looking forward to THz nanoscopy solving basic conduction puzzles such as superconductivity" says Fritz Keilmann. THz nanosopy could be furthermore an interesting tool for chemical and structural analysis of compounds and biological systems, as THz radiation is also highly sensitive to vibrations of crystal lattices and molecules. "Future improvements of our technique could allow for THz characterization of even single nanocrystals, biomolecules or electrons" says Rainer Hillenbrand, leader of the Nano-Photonics Group at MPIB and the Nanooptics Laboratory at the newly established nanoGUNE research center (San Sebastian, Spain).

The demonstrated achievement is the direct outcome of a research plan subsidized since 2003 within a Nanofutur grant of the German Federal Ministry of Education and Research endowed to Rainer Hillenbrand. The plan had already anticipated a start-up company which indeed was founded in 2007 (Neaspec GmbH).

Original publication:
A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua and R. Hillenbrand, Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices, Nano Letters, DOI: 10.1021/nl802086x (2008).
Contact:
Dr. Rainer Hillenbrand
hillenbr@biochem.mpg.de
Nanooptics Laboratory
CIC nanoGUNE Consolider
20009 Donostia - San Sebastian, Spain
and
Nano-Photonics Group
Max-Planck-Institut für Biochemie
82152 Martinsried, Germany
phone: +49 89 8578 2455

Eva-Maria Diehl | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de/hillenbrand

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>