Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Could Be Used to Search Space Dust for Life's Ingredients

04.02.2014
While the origin of life remains mysterious, scientists are finding more and more evidence that material created in space and delivered to Earth by comet and meteor impacts could have given a boost to the start of life. Some meteorites supply molecules that can be used as building blocks to make certain kinds of larger molecules that are critical for life.

esearchers have analyzed carbon-rich meteorites (carbonaceous chondrites) and found amino acids, which are used to make proteins. Proteins are among the most important molecules in life, used to make structures like hair and skin, and to speed up or regulate chemical reactions. They have also found components used to make DNA, the molecule that carries the instructions for how to build and regulate a living organism, as well as other biologically important molecules like nitrogen heterocycles, sugar-related organic compounds, and compounds found in modern metabolism.


This photo compares the sample size typically used in meteorite studies (yellow oval) to the sample size used with the new equipment (blue circle) in Goddard's Astrobiology Analytical Laboratory. Image Credit: Michael Callahan


This equipment is used by Goddard's Astrobiology Analytical Lab to analyze very small samples. On the right is the nanoelectrospray emitter, which gives sample molecules an electric charge and transfers them to the inlet of the mass spectrometer (left), which identifies the molecules by their mass. Image Credit: Michael Callahan

However, these carbon-rich meteorites are relatively rare, comprising less than five percent of recovered meteorites, and meteorites make up just a portion of the extraterrestrial material that comes to Earth. Also, the building-block molecules found in them usually have been at low concentrations, typically parts-per-million or parts-per-billion. This raises the question of how significant their supply of raw material was. However, Earth constantly receives other extraterrestrial material – mostly in the form of dust from comets and asteroids.

"Despite their small size, these interplanetary dust particles may have provided higher quantities and a steadier supply of extraterrestrial organic material to early Earth," said Michael Callahan of NASA's Goddard Space Flight Center in Greenbelt, Md. "Unfortunately, there have been limited studies examining their organic composition, especially with regards to biologically relevant molecules that may have been important for the origin of life, due to the miniscule size of these samples."

Callahan and his team at Goddard's Astrobiology Analytical Laboratory have recently applied advanced technology to inspect extremely small meteorite samples for the components of life. "We found amino acids in a 360 microgram sample of the Murchison meteorite," said Callahan. "This sample size is 1,000 times smaller than the typical sample size used." A microgram is one-millionth of a gram; 360 micrograms is about the weight of a few eyebrow hairs. 28.35 grams equal an ounce.

"Our study was for proof-of-concept," adds Callahan. "Murchison is a well-studied meteorite. We got the same results looking at a very small fragment as we did a much larger fragment from the same meteorite. These techniques will allow us to investigate other small-scale extraterrestrial materials such as micrometeorites, interplanetary dust particles, and cometary particles in future studies." Callahan is lead author of a paper on this research available online in the Journal of Chromatography A.

Analyzing such tiny samples is extremely challenging. "Extracting much less meteorite powder translates into having much lower amino acid concentration for analyses," said Callahan. "Therefore we need the most sensitive techniques available. Also, since meteorite samples can be highly complex, techniques that are highly specific for these compounds are necessary too."

The team used a nanoflow liquid chromatography instrument to sort the molecules in the meteorite sample, then applied nanoelectrospray ionization to give the molecules an electric charge and deliver them to a high-resolution mass spectrometer instrument, which identified the molecules based on their mass. "We are pioneering the application of these techniques for the study of meteoritic organics," said Callahan. "These techniques can be highly finicky, so just getting results was the first challenge."

"I'm particularly interested in analyzing cometary particles from the Stardust mission," adds Callahan. "It's one of the reasons why I came to NASA. When I first saw a photo of the aerogel used to capture particles for the Stardust mission, I was hooked."

"This technology will also be extremely useful to search for amino acids and other potential chemical biosignatures in samples returned from Mars and eventually plume materials from the outer planet icy moons Enceladus and Europa," said Daniel Glavin of the Astrobiology lab at Goddard, a co-author on the paper.

This technology and the laboratory techniques that the Goddard lab develops to apply it to analyze meteorites will be valuable for future sample-return missions since the amount of sample likely will be limited. "Missions involving the collection of extraterrestrial material for sample return to Earth usually collect only a very small amount and the samples themselves can be extremely small as well," said Callahan. "The traditional techniques used to study these materials usually involve inorganic or elemental composition. Targeting biologically relevant molecules in these samples is not routine yet. We are not there either, but we are getting there."

The research was funded by the NASA Astrobiology Institute, the Goddard Center for Astrobiology and the NASA Cosmochemistry Program.

Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md.
william.a.steigerwald@nasa.gov

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/new-technique-could-be-used-to-search-space-dust-for-lifes-ingredients/#.Uu_sGxAudJs

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>