Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-Earth has an atmosphere, but is it steamy or gassy?

02.12.2010
In December 2009, astronomers announced the discovery of a super-Earth known as GJ 1214b. At the time, they reported signs that the newfound world likely had a thick, gaseous atmosphere.

Now, a team led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics) has made the first measurements of GJ 1214b's atmosphere. However, the measurements raise as many questions about the planet's atmospheric composition as they answer.

"This is the first super-Earth known to have an atmosphere," said Bean. "But even with these new measurements we can't say yet what that atmosphere is made of. This world is being very shy and veiling its true nature from us."

A super-Earth is a planet up to three times the size of Earth and weighing one to ten times as much. (GJ 1214b is 2.7 times the size of Earth and 6.5 times as massive.) They are likely to be mostly solid (some combination of rock or ices), unlike the hundreds of Jupiter-sized gas giants found to date around distant stars.

Researchers suggested three atmospheric possibilities for GJ 1214b. The most intriguing was a thick blanket of steam vaporized by the nearby star. (This option led to the nickname "waterworld," although it's too hot for an ocean.) The second option was a mini-Neptune with a rocky core surrounded by ices and a hydrogen/helium atmosphere. The third model has no equivalent in our solar system - a big, rocky world with a soupy mix of gases (mainly hydrogen) recently emitted by volcanoes.

To study the planet's atmosphere, the team observed it when it crossed in front of its star. During such transits, the star's light filters through the atmosphere. Gases absorb the starlight at particular wavelengths, or colors, leaving behind a chemical fingerprint detectable from Earth. Similar observations have found gases like hydrogen and sodium vapor in the atmospheres of distant "hot Jupiters."

"This is the first super-Earth to have its atmosphere analyzed. We've reached a real milestone on the road toward characterizing these worlds," stated Bean.

Commenting on the work, Harvard astronomer David Charbonneau, who is not involved in the recent study but led the team that discovered GJ 1214b, agreed. "In less than 10 years, we've gone from studying the atmospheres of alien worlds like Jupiter, to Neptunes, to super-Earths. Earth-sized worlds are next, although they'll be the most difficult."

The spectrum of GJ 1214b proved to be featureless, which ruled out a cloud-free atmosphere composed primarily of hydrogen. If the atmosphere of GJ 1214b has abundant hydrogen, then it must be cloaked by a thick blanket of clouds (like Venus) or haze (like Saturn's moon Titan). A dense, steamy atmosphere also fits the data.

"It would have to be very dense - about one-fifth water vapor by volume," explained Bean. "Compared to our Earth, with an atmosphere that's four-fifths nitrogen and one-fifth oxygen with only a touch of water vapor."

The team examined GJ 1214b in the near-infrared region of the spectrum (780 - 1000 nanometers) using the ground-based Very Large Telescope at Paranal Observatory in Chile. Additional observations in the mid- or far-infrared might finally answer the question: Is the atmosphere of GJ 1214b steamy or gassy?

"A lot of people are putting this planet under a microscope," said Bean. "In the next year, we should have some solid answers about what it's truly like."

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>