Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroboscope for Quantum Physicists: Resonator delivers short light pulses for entanglement

01.02.2010
An important milestone towards the construction of a quantum computer is the generation and investigation of large quantum systems. To this end, photons - the particles of light - are promising candidates.

Physicists of the group of Prof. Harald Weinfurter (at the Ludwig-Maximilians-Universität München and the Max-Planck-Institute for Quantum Optics, Garching, Germany, in the Cluster of Excellence "Munich Center for Advanced Photonics") succeeded in developing a new method for the generation of intense, ultra-short light pulses in the ultraviolet (UV) wavelength region at high repetition rates. These pulses are essential for the generation of multiple entangled photons.

The goal of the Munich scientists is to entangle as many photons as possible and to study their properties. Entanglement, or Einstein's "spooky action at a distance", still fascinates quantum physicists today. Therefore, their focus is not only on realizing the quantum computer, but they would also like to obtain a deeper insight into the world of quantum physics and to understand how entanglement is distributed over large quantum systems. To generate several entangled photons at once, ultra-short stroboscope-like light pulses of very high power are required. The main challenge for this project was to obtain ultra-short, high energy pulses with a high repetition rate and at UV wavelengths. All these demands had to be fulfilled at the same time.

The Munich team has now succeeded in transferring a method working in the infrared wavelength region to the more powerful ultraviolet region. They implemented a resonator to enhance UV light pulses with a pulse duration in the femtosecond regime (10-15 seconds) at a high repetition rate (82 MHz). Inside the resonator the pulses continuously add up only if the following condition is fulfilled: each incoming pulse has to overlap exactly with the pulses already stored in the resonator. The light intensity created in the resonator exceeds those of comparable commercial laser systems by at least a factor of five. A crystal inside the resonator then allows the generation of entangled photons.

Roland Krischek, who co-constructed and characterized the light resonator, sees a lot of potential: "This light resonator allows us to study entanglement of larger quantum systems." His colleague Witlef Wieczorek remarks: "This resonator can not only be used to generate multi-photon entanglement but also to analyze, for example, molecular formation or carrier dynamics in semiconductors."

The results of the Munich team are published in the next issue of Nature Photonics, online on January 31, 2010.

DOI: 10.1038/NPHOTON.2009.286

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de
http://xqp.physik.uni-muenchen.de/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>