Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroboscope for Quantum Physicists: Resonator delivers short light pulses for entanglement

01.02.2010
An important milestone towards the construction of a quantum computer is the generation and investigation of large quantum systems. To this end, photons - the particles of light - are promising candidates.

Physicists of the group of Prof. Harald Weinfurter (at the Ludwig-Maximilians-Universität München and the Max-Planck-Institute for Quantum Optics, Garching, Germany, in the Cluster of Excellence "Munich Center for Advanced Photonics") succeeded in developing a new method for the generation of intense, ultra-short light pulses in the ultraviolet (UV) wavelength region at high repetition rates. These pulses are essential for the generation of multiple entangled photons.

The goal of the Munich scientists is to entangle as many photons as possible and to study their properties. Entanglement, or Einstein's "spooky action at a distance", still fascinates quantum physicists today. Therefore, their focus is not only on realizing the quantum computer, but they would also like to obtain a deeper insight into the world of quantum physics and to understand how entanglement is distributed over large quantum systems. To generate several entangled photons at once, ultra-short stroboscope-like light pulses of very high power are required. The main challenge for this project was to obtain ultra-short, high energy pulses with a high repetition rate and at UV wavelengths. All these demands had to be fulfilled at the same time.

The Munich team has now succeeded in transferring a method working in the infrared wavelength region to the more powerful ultraviolet region. They implemented a resonator to enhance UV light pulses with a pulse duration in the femtosecond regime (10-15 seconds) at a high repetition rate (82 MHz). Inside the resonator the pulses continuously add up only if the following condition is fulfilled: each incoming pulse has to overlap exactly with the pulses already stored in the resonator. The light intensity created in the resonator exceeds those of comparable commercial laser systems by at least a factor of five. A crystal inside the resonator then allows the generation of entangled photons.

Roland Krischek, who co-constructed and characterized the light resonator, sees a lot of potential: "This light resonator allows us to study entanglement of larger quantum systems." His colleague Witlef Wieczorek remarks: "This resonator can not only be used to generate multi-photon entanglement but also to analyze, for example, molecular formation or carrier dynamics in semiconductors."

The results of the Munich team are published in the next issue of Nature Photonics, online on January 31, 2010.

DOI: 10.1038/NPHOTON.2009.286

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de
http://xqp.physik.uni-muenchen.de/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>