Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One step closer to dark matter in universe

31.10.2011
Scientists all over the world are working feverishly to find the dark matter in the universe. Now researchers at Stockholm University have taken one step closer to solving the enigma with a new method.

The universe is still a mystery. We know what about 5 percent of the universe consists of. The rest is simply unknown. Researchers have gotten as far as knowing that a major portion, about 23 percent of the universe consists of a new kind of matter. No one has seen this matter, and no one knows what it consists of. The remaining roughly 72 percent of the universe is made up of something even more enigmatic, called dark energy.

Jan Conrad and Maja Llena Garde are scientists at Fysikum, Stockholm University and the Oskar Klein Center for Cosmoparticle Physics, and they are part of the international research team that has taken a giant step toward finding dark matter with the help of a new method.

“With our new method, for the first time we have been able to exclude models regarded by many as the most natural ones. Previous attempts did not achieve the same sensitivity. What’s more, our results are especially reliable,” says Jan Conrad.

“We can’t see dark matter because it doesn’t interact with the matter we know about. Nor does it emit any light. It’s virtually invisible. But we can determine that it affects the matter we’re familiar with.”

“We see how the rotation of galaxies is affect by something that weighs a lot but is invisible. We also see how the gas in galaxy clusters doesn’t move as it would if there were only visible matter present. So we know it’s there. The question is simply what it is. Many theoretical models have been developed to predict particles that meet the requirements for being identified as dark matter. But experiments are needed if we are to determine whether any of these models are correct,” says Jan Conrad.

Since dark matter is invisible, we can only see traces of it, and one way to do this is to look at light with extremely high energy, so-called gamma radiation. With the help of the satellite-borne Fermi Large Area Telescope, scientists can study gamma radiation and look for traces of dark matter.

“We’ve looked at gamma radiation from dwarf galaxies. These galaxies are small and dim, but extremely massive, so they seem to consist largely of dark matter. Unfortunately we still haven’t detected a gamma signal from the dark matter in these objects, but we are definitely getting closer. Our new method involves looking at several dwarf galaxies at the same time and combining the observations in a new way, which yields excellent results. This is an exciting time for dark matter research, because we’re getting closer and closer,” says Maja Llena Garde.

“This is truly a giant step forward in our pursuit of dark matter,” says the director of the Oskar Klein Center, Lars Bergström. “With my colleague Joakim Edsjö, I’ve studied these processes theoretically for more than ten years, but this is the first time important experimental breakthroughs are being seen. Now we just hope that Jan, Maja, and the Fermi team will continue this exciting quest using their new method.”

The research team’s findings are being published in the journal Physical Review Letters under the title “Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope.”

Further information:
Maja Llena Garde, doctoral candidate, Fysikum, Stockholm University, e-mail: mgarde@fysik.su.se, phone: +46-8-5537 8731

Jan Conrad, associate professor, Fysikum, Stockholm University, e-mail: conrad@fysik.su.se, phone: +46-8-55378769

Linnea Bergnéhr | idw
Further information:
http://www.vr.se

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>