Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One step closer to dark matter in universe

31.10.2011
Scientists all over the world are working feverishly to find the dark matter in the universe. Now researchers at Stockholm University have taken one step closer to solving the enigma with a new method.

The universe is still a mystery. We know what about 5 percent of the universe consists of. The rest is simply unknown. Researchers have gotten as far as knowing that a major portion, about 23 percent of the universe consists of a new kind of matter. No one has seen this matter, and no one knows what it consists of. The remaining roughly 72 percent of the universe is made up of something even more enigmatic, called dark energy.

Jan Conrad and Maja Llena Garde are scientists at Fysikum, Stockholm University and the Oskar Klein Center for Cosmoparticle Physics, and they are part of the international research team that has taken a giant step toward finding dark matter with the help of a new method.

“With our new method, for the first time we have been able to exclude models regarded by many as the most natural ones. Previous attempts did not achieve the same sensitivity. What’s more, our results are especially reliable,” says Jan Conrad.

“We can’t see dark matter because it doesn’t interact with the matter we know about. Nor does it emit any light. It’s virtually invisible. But we can determine that it affects the matter we’re familiar with.”

“We see how the rotation of galaxies is affect by something that weighs a lot but is invisible. We also see how the gas in galaxy clusters doesn’t move as it would if there were only visible matter present. So we know it’s there. The question is simply what it is. Many theoretical models have been developed to predict particles that meet the requirements for being identified as dark matter. But experiments are needed if we are to determine whether any of these models are correct,” says Jan Conrad.

Since dark matter is invisible, we can only see traces of it, and one way to do this is to look at light with extremely high energy, so-called gamma radiation. With the help of the satellite-borne Fermi Large Area Telescope, scientists can study gamma radiation and look for traces of dark matter.

“We’ve looked at gamma radiation from dwarf galaxies. These galaxies are small and dim, but extremely massive, so they seem to consist largely of dark matter. Unfortunately we still haven’t detected a gamma signal from the dark matter in these objects, but we are definitely getting closer. Our new method involves looking at several dwarf galaxies at the same time and combining the observations in a new way, which yields excellent results. This is an exciting time for dark matter research, because we’re getting closer and closer,” says Maja Llena Garde.

“This is truly a giant step forward in our pursuit of dark matter,” says the director of the Oskar Klein Center, Lars Bergström. “With my colleague Joakim Edsjö, I’ve studied these processes theoretically for more than ten years, but this is the first time important experimental breakthroughs are being seen. Now we just hope that Jan, Maja, and the Fermi team will continue this exciting quest using their new method.”

The research team’s findings are being published in the journal Physical Review Letters under the title “Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope.”

Further information:
Maja Llena Garde, doctoral candidate, Fysikum, Stockholm University, e-mail: mgarde@fysik.su.se, phone: +46-8-5537 8731

Jan Conrad, associate professor, Fysikum, Stockholm University, e-mail: conrad@fysik.su.se, phone: +46-8-55378769

Linnea Bergnéhr | idw
Further information:
http://www.vr.se

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>