Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Packs Big Gamma-Ray Jolt

11.10.2011
In the Crab Nebula, in the constellation Taurus, a remnant of an exploded star has astrophysicists scratching their heads, reassessing their theories about gamma rays — the highest-energy form of light, generated by subatomic particles moving close to the speed of light.

In the center of the Crab Nebula, the Crab Pulsar, a spinning neutron star left over when a supernova exploded, is pulsing out gamma rays with energies never seen before — above one hundred thousand million electron volts, according to an international scientific team that includes researchers from the University of Delaware.

The findings are reported in the Oct. 7 issue of the journal Science. The journal article has 95 authors, including scientists from 26 institutions in five countries, who are part of the VERITAS collaboration.

VERITAS, or Very Energetic Radiation Imaging Telescope Array System, is a ground-based observatory for gamma-ray astronomy located at the Fred Lawrence Whipple Observatory in southern Arizona. It is operated by a collaboration of more than 100 scientists from 22 different institutions in the United States, Ireland, England, Germany and Canada.

“This is a really exciting and unexpected result,” says Jamie Holder, assistant professor in the UD Department of Physics and Astronomy. Holder’s group in the Bartol Research Institute at UD helped to construct the VERITAS telescopes. Members of the Delaware group collected a portion of the data for this study and developed some of the software used in the analysis.

“Existing theories of gamma rays from pulsars predict a sharp cut-off in the emission at high energies, around 10 thousand million electron volts. Our data show gamma rays with energies at least 20 times this, implying that the gamma rays are being produced in a different place, and probably by a different mechanism, than expected,” Holder says.

Holder points out that when a gamma ray hits the atmosphere, it produces a small flash of blue light that lasts only a few billionths of a second. The VERITAS cameras take 200 photographs a second. He and his team developed software that would sift out the gamma rays from all of the background noise, representing about one-tenth of the images.

“Our software throws away all the stuff that isn’t gamma rays,” he says.

Holder says that he and his colleagues will keep observing the Crab Pulsar for the next few years, as the spinning star continues to wind down.

With so much radioactivity being spun out, are there any implications for us here on Earth? As Holder notes, gamma rays are ever-present in the universe, and fortunately Earth’s atmosphere protects us from them.

Currently, Holder and his group at UD are in the middle of building 2,000 photo detectors for the new cameras for the VERITAS telescopes.

“The new photodetectors collect 50 percent more light than our existing ones, which will make us more sensitive to gamma rays, particularly in the energy range where the Crab Pulsar emits,” Holder notes.

VERITAS is funded by the U.S. National Science Foundation, U.S. Department of Energy Office of Science, Smithsonian Institution, Natural Sciences and Engineering Research Council of Canada, Science Foundation Ireland, and Science and Technology Facilities Council of the United Kingdom.

The Bartol Research Institute is a research center in UD's Department of Physics and Astronomy. The institute's primary function is to carry out forefront scientific research with a primary focus on physics, astronomy, and space sciences.

View the original article with all of the images on UD's UDaily news service here: http://www.udel.edu/udaily/2012/oct/star-gamma-rays-100711.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

Further reports about: Astronomy Big Bang Delaware Foundation Gamma-ray Physic Pulsar Science TV VERITAS crab gamma rays nebula

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>