Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Packs Big Gamma-Ray Jolt

11.10.2011
In the Crab Nebula, in the constellation Taurus, a remnant of an exploded star has astrophysicists scratching their heads, reassessing their theories about gamma rays — the highest-energy form of light, generated by subatomic particles moving close to the speed of light.

In the center of the Crab Nebula, the Crab Pulsar, a spinning neutron star left over when a supernova exploded, is pulsing out gamma rays with energies never seen before — above one hundred thousand million electron volts, according to an international scientific team that includes researchers from the University of Delaware.

The findings are reported in the Oct. 7 issue of the journal Science. The journal article has 95 authors, including scientists from 26 institutions in five countries, who are part of the VERITAS collaboration.

VERITAS, or Very Energetic Radiation Imaging Telescope Array System, is a ground-based observatory for gamma-ray astronomy located at the Fred Lawrence Whipple Observatory in southern Arizona. It is operated by a collaboration of more than 100 scientists from 22 different institutions in the United States, Ireland, England, Germany and Canada.

“This is a really exciting and unexpected result,” says Jamie Holder, assistant professor in the UD Department of Physics and Astronomy. Holder’s group in the Bartol Research Institute at UD helped to construct the VERITAS telescopes. Members of the Delaware group collected a portion of the data for this study and developed some of the software used in the analysis.

“Existing theories of gamma rays from pulsars predict a sharp cut-off in the emission at high energies, around 10 thousand million electron volts. Our data show gamma rays with energies at least 20 times this, implying that the gamma rays are being produced in a different place, and probably by a different mechanism, than expected,” Holder says.

Holder points out that when a gamma ray hits the atmosphere, it produces a small flash of blue light that lasts only a few billionths of a second. The VERITAS cameras take 200 photographs a second. He and his team developed software that would sift out the gamma rays from all of the background noise, representing about one-tenth of the images.

“Our software throws away all the stuff that isn’t gamma rays,” he says.

Holder says that he and his colleagues will keep observing the Crab Pulsar for the next few years, as the spinning star continues to wind down.

With so much radioactivity being spun out, are there any implications for us here on Earth? As Holder notes, gamma rays are ever-present in the universe, and fortunately Earth’s atmosphere protects us from them.

Currently, Holder and his group at UD are in the middle of building 2,000 photo detectors for the new cameras for the VERITAS telescopes.

“The new photodetectors collect 50 percent more light than our existing ones, which will make us more sensitive to gamma rays, particularly in the energy range where the Crab Pulsar emits,” Holder notes.

VERITAS is funded by the U.S. National Science Foundation, U.S. Department of Energy Office of Science, Smithsonian Institution, Natural Sciences and Engineering Research Council of Canada, Science Foundation Ireland, and Science and Technology Facilities Council of the United Kingdom.

The Bartol Research Institute is a research center in UD's Department of Physics and Astronomy. The institute's primary function is to carry out forefront scientific research with a primary focus on physics, astronomy, and space sciences.

View the original article with all of the images on UD's UDaily news service here: http://www.udel.edu/udaily/2012/oct/star-gamma-rays-100711.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

Further reports about: Astronomy Big Bang Delaware Foundation Gamma-ray Physic Pulsar Science TV VERITAS crab gamma rays nebula

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>