Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spotlighting the sun

28.10.2014

Partial solar eclipse shows off massive sunspot

Astronomers with the National Science Foundation (NSF)-funded National Optical Astronomy Observatory (NOAO) captured pictures not only of Thursday's partial solar eclipse, but also of the "monster" sized active region or sun spot that has many comparing it to one of a similar size that occurred 11 years ago.


Taken with a cell phone through a 60mm Lunt Hydrogen Alpha Telescope, this image shows off sunspots, prominences and filaments.

Credit: Rob Sparks, NOAO

The sun spots were earlier reported by scientists with the NSF-supported National Solar Observatory. According to astronomers Frank Hill and Kiran Jain, "As of Oct 21, 2014, a very large active region is currently on the solar disk and producing flares as strong as an X1. [Solar flares are classified according to their strength, and X-class flares are the biggest.]

It is eerily reminiscent of another very large active region, which appeared almost exactly 11 years ago around Halloween 2003 very close to the same location on the sun and produced an X17 event, the largest solar flare recorded in modern history. That flare was one of a series of very strong flares now known as the Halloween flares. We may be in for an encore. This active region currently covers 2,000 millionths of the solar disk area and is almost the size of Jupiter."

What's the significance of active regions?

When they produce X17 events with solar winds that spew solar matter full of charged particles, they can impact the Earth's ionosphere, the very upper part of our atmosphere. That's where our satellites reside, so extreme solar winds can hamper our communications systems that rely on these satellites, such as GPSs and telecommunications, as well as have impact on power grids.

Additionally, the increased solar activity makes that upper atmosphere a little hotter, which causes more wear-and-tear on the satellites. The last Halloween flares actually knocked out power grids in Sweden, so they can be cause for concern here on Earth. The current active region showed up in late September and is likely to stick around for a few weeks, so astronomers are monitoring it closely to see how it grows or changes.

And NOAO's Robert Sparks showed that sometimes all it takes is a phone camera and a telescope to provide photos with amazing detail. In two of the photos, he used cell phones attached to a telescope, providing not only a good look at the sun's active region, but also prominences (large, bright, gaseous features that extend outward from the sun's surface, often in loop shapes) and filaments (large regions of very dense, cool gas, held in place by magnetic fields that appear as dark, long and thin).

Media Contacts
Ivy F. Kupec, NSF, (703) 292-8796, ikupec@nsf.gov

Related Websites
National Optical Astronomy Observatory: http://www.noao.edu/

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Ivy F. Kupec | Eurek Alert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=133135&org=NSF&from=news

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>