Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinning atoms in light crystals

29.10.2013
After more than 40 years of intense research, experimental physicists still seek to explore the rich behaviour of electrons confined to a two-dimensional crystalline structure exposed to large magnetic fields.

Now a team of scientists around Prof. Immanuel Bloch (Chair for Experimental Physics at the Ludwig-Maximilians-Universität Munich and Director at MPQ) in collaboration with the theoretical physicist Dr. Belén Paredes (CSIC/UAM Madrid) developed a new experimental method to simulate these systems using a crystal made of neutral atoms and laser light.


Fig. 1 Cyclotron orbits of atoms exposed to extremely strong effective magnetic fields in specially engineered light crystals. The effective field strengths realized in the experiment correspond to tens of thousands of Tesla magnetic field strength applied to a real material. In the experiment the celebrated Hofstadter-Harper as well as the Quantum Spin Hall Hamiltonian could thereby be implemented.

In such artificial quantum matter, the atoms could be exposed to a uniform effective magnetic field several thousand times stronger than in typical condensed matter systems (Phys. Rev. Lett. 111, 185301, 2013).

Charged particles in a magnetic field experience a force perpendicular to their direction of motion – the Lorentz force –, which makes them move on circular (cyclotron) orbits in a plane perpendicular to the magnetic field. A sufficiently strong magnetic field can thereby dramatically change the properties of a material, giving rise to novel quantum phenomena such as the Quantum Hall effect. The cyclotron orbits shrink with increasing magnetic field. For typical field strengths, their size is much larger than the distance between neighbouring ions in the material, and the role of the crystal is negligible. However, for extremely large magnetic fields the two length scales become comparable and the interplay between the magnetic field and the crystal potential leads to striking new effects.

These are manifested for instance in a fractal structure of the energy spectrum, which was first predicted by Douglas Hofstadter in 1976 and is known as the Hofstadter’s butterfly. Many intriguing electronic material properties are related to it, but so far experiments could not explore the full complexity of the problem.

For real materials, entering the Hofstadter regime is typically very challenging because the spacing between neighbouring ions is very small. Therefore inaccessibly large magnetic fields have to be applied. One solution is to synthesize artificial materials with effectively larger lattice constants, such as in two superimposed sheets of graphene and boron-nitride.

The experiments performed by the Munich research team follow an alternative approach. In their experiments large magnetic fields are created artificially by exposing ultracold atoms to specially designed laser fields. The system consists of Rubidium atoms cooled to very low temperatures, which are confined in a period structure formed by standing waves of laser light. “Atoms can only sit in regions of high light intensities and arrange in a 2D structure similar to eggs in an egg carton”, explains Monika Aidelsburger, a physicist in the team of Professor Bloch. “The laser beams play the role of the ion crystal and the atoms the one of the electrons.”

Since the atoms are neutral, however, they do not experience a Lorentz force in the presence of an external magnetic field. The challenge was to develop a technique that mimics the Lorentz force for neutral particles. A combination of tilting the lattice and shaking it simultaneously with an additional pair of crossed laser beams allows the atoms to move in the lattice and perform a cyclotron-like motion similar to charged particles in a magnetic field. In this way, the team succeeded in achieving strong artificial magnetic fields, high enough to access the regime of the Hofstadter butterfly.

In addition, the researchers were able to realize what is known as the Spin Hall Effect, i.e. two particles with opposite spin experience a magnetic field of the same strength but pointing in the opposite direction. As a consequence, the direction of the Lorentz force is opposite for the two spins and therefore the cyclotron-motion is reversed. In their experiments the two spin states were effectively realized by two different states of the Rubidium atoms.

In future experiments the method employed by the researchers could be used to explore the rich physics of the Hofstadter model using the clean and well-controlled environment of ultracold-atoms in optical lattices. Various new experimental techniques such as the quantum gas microscope to detect single atoms could contribute to a deeper understanding of the material properties by directly looking at the microscopic motion of the particles in the lattice. The new method might also open the door for the exploration of novel quantum phases of matter under extreme experimental conditions. [M.A.]

Original publication:

M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes and I. Bloch
Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices

Physical Review Letters 111, 185301 (2013)

Contact:

Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 München, and
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München, Germany
Phone: +49 89 / 32 905 -138
E-mail: immanuel.bloch@mpq.mpg.de
M.Sc. Monika Aidelsburger
LMU Munich
Phone: +49 89 2180 6119
E-mail: monika.aidelsburger@physik.uni-muenchen.de
Dr. Belén Paredes
Instituto de Física Teórica UAM/CSIC
C/Nicolás Cabrera 13-15
Cantoblanco
28049 Madrid, Spain
Phone: +34 91 299 9862
E-mail: belen.paredes@csic.es

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.quantum-munich.de/media/
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>