Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space tornadoes power the atmosphere of the Sun

28.06.2012
Mathematicians at the University of Sheffield, as part of an international team, have discovered tornadoes in space which could hold the key to power the atmosphere of the Sun to millions of kelvin.
The super tornadoes - which are thousands of times larger and more powerful than their earthly counterparts but which have a magnetic skeleton - spin at speeds of more than 6,000 mph at temperatures in millions of centigrade in the Sun’s atmosphere.

They are more than 1,000 miles wide – hundreds of miles longer than the total distance between Land’s End to John O’Groats. It is estimated that there are as many as 11,000 of these swirling events above the Sun’s surface at any time.

Applied mathematicians from the University of Sheffield (Professor Robertus Erdélyi –senior author, and Dr Viktor Fedun) collaborating with the University of Oslo in Norway (Drs Sven Wedemeyer-Böhm – first author, Eamon Scullion – a Sheffield ex-postgraduate, Luc Rouppe van de Voort), Kiepenheuer Institute for Solar Physics of Freiburg, Germany (Dr Oskar Steiner), and Uppsala University in Sweden (Jaime de la Cruz Rodriguez), say the solar tornadoes carry the energy from the energy reservoir below the Sun’s surface, called the convection zone, to the outer atmosphere in the form of magnetic waves.

Professor Robertus Erdélyi (a.k.a von Fáy-Siebenbürgen) Head of the Solar Physics and Space Plasma Research Centre (SP2RC) of the University of Sheffield’s School of Mathematics and Statistics, said: “If we understand how nature heats up magnetised plasmas, like in the tornadoes observed in the Sun, one day we may be able to use this process to develop the necessary technology and build devices on Earth that produce free, clean, green energy. Because of our collaborative research it looks an essential leap forward is made towards unveiling the secrets about a great and exciting problem in plasma-astrophysics and we are getting closer and closer to find a solution.

“We report here the discovery of ubiquitous magnetic solar tornadoes and their signature in the hottest areas of the Sun’s atmosphere where the temperature is a few millions of degree kelvin, about thousands of kilometres from the Sun’s surface. This is a major step in the field.”

Professor Robertus Erdélyi added: “One of the major problems in modern astrophysics is why the atmosphere of a star, like our own Sun, is considerably hotter than its surface? Imagine, that you climb a mountain, e.g. a monroe in the Scottish highlands, and it becomes hotter as you go higher and higher. Many scientists are researching how to “heat” the atmosphere above the surface of the Sun, or any other star.

Tornado facts:
The space tornadoes are very magnetic and they operate in plasma - Plasma is the forth known state of matter, beside solid, liquid and gas and makes around 99 per cent of the known matter of the Universe. The tornados act in a similar way to water does if you take the plug out of a full bath.

Wedemeyer-Böhm et al (2012)

“It is understood that the energy originates from below the Sun’s surface, but how this massive amount of energy travels up to the solar atmosphere surrounding it is a mystery. We believe we have found evidence in the form of rotating magnetic structures - solar tornadoes - that channel the necessary energy in the form of magnetic waves to heat the magnetised solar plasma. It is hoped that the process could be replicated here on Earth one day to energise plasma in tokamak that are believed to be a future device to produce completely clean energy.”

Scientists viewed the solar tornadoes in the outer atmosphere of the Sun, stretching thousands of miles from the giant star’s surface by using both satellite and ground-based telescopes. They then created 3D-layered seqence of images of the tornadoes and simulated their evolution with state-of-the-art numerical codes using the magnetic imprints detected by their high-resolution, cutting-edge telescopes.

Additonal information

For images and videos visit http://www.solartornado.info

The University of Sheffield

With nearly 25,000 students from 125 countries, the University of Sheffield is one of the UK’s leading and largest universities. A member of the Russell Group, it has a reputation for world-class teaching and research excellence across a wide range of disciplines. The University of Sheffield has been named University of the Year in the Times Higher Education Awards for its exceptional performance in research, teaching, access and business performance. In addition, the University has won four Queen’s Anniversary Prizes (1998, 2000, 2002, and 2007).

These prestigious awards recognise outstanding contributions by universities and colleges to the United Kingdom’s intellectual, economic, cultural and social life. Sheffield also boasts five Nobel Prize winners among former staff and students and many of its alumni have gone on to hold positions of great responsibility and influence around the world. The University’s research partners and clients include Boeing, Rolls Royce, Unilever, Boots, AstraZeneca, GSK, ICI, Slazenger, and many more household names, as well as UK and overseas government agencies and charitable foundations.

The University has well-established partnerships with a number of universities and major corporations, both in the UK and abroad. Its partnership with Leeds and York Universities in the White Rose Consortium has a combined research power greater than that of either Oxford or Cambridge.

Contact

For further information please contact:

Paul Mannion
Media Relations Officer
The University of Sheffield
0114 222 9851
P.f.mannion@sheffield.ac.uk

Professor Robertus Erdélyi
Head of the Solar Physics and Space Plasma Research Centre
0114 2223832
robertus@sheffield.ac.uk

Paul Mannion | EurekAlert!
Further information:
http://www.sheffield.ac.uk
http://www.sheffield.ac.uk/news/nr/super-space-tornadoes-magnetic-plasma-1.190654
http://www.solartornado.info

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>