Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New solar system formation models indicate that Jupiter's foray robbed Mars of mass

06.06.2011
Planetary scientists have long wondered why Mars is only about half the size and one-tenth the mass of Earth. As next-door neighbors in the inner solar system, probably formed about the same time, why isn't Mars more like Earth and Venus in size and mass?

A paper published in the journal Nature this week provides the first cohesive explanation and, by doing so, reveals an unexpected twist in the early lives of Jupiter and Saturn as well.

Dr. Kevin Walsh, a research scientist at Southwest Research Institute® (SwRI®), led an international team performing simulations of the early solar system, demonstrating how an infant Jupiter may have migrated to within 1.5 astronomical units (AU, the distance from the Sun to the Earth) of the Sun, stripping a lot of material from the region and essentially starving Mars of formation materials.

"If Jupiter had moved inwards from its birthplace down to 1.5 AU from the Sun, and then turned around when Saturn formed as other models suggest, eventually migrating outwards towards its current location, it would have truncated the distribution of solids in the inner solar system at about 1 AU and explained the small mass of Mars," says Walsh. "The problem was whether the inward and outward migration of Jupiter through the 2 to 4 AU region could be compatible with the existence of the asteroid belt today, in this same region. So, we started to do a huge number of simulations.

"The result was fantastic," says Walsh. "Our simulations not only showed that the migration of Jupiter was consistent with the existence of the asteroid belt, but also explained properties of the belt never understood before."

The asteroid belt is populated with two very different types of rubble, very dry bodies as well as water-rich orbs similar to comets. Walsh and collaborators showed that the passage of Jupiter depleted and then re-populated the asteroid belt region with inner-belt bodies originating between 1 and 3 AU as well as outer-belt bodies originating between and beyond the giant planets, producing the significant compositional differences existing today across the belt.

The collaborators call their simulation the "Grand Tack Scenario," from the abrupt change in the motion of Jupiter at 1.5 AU, like that of a sailboat tacking around a buoy. The migration of the gas giants is also supported by observations of many extra-solar planets found in widely varying ranges from their parent stars, implying migrations of planets elsewhere in universe.

The paper, "A Low Mass for Mars from Jupiter's Early Gas-Driven Migration," published in the June 5 issue of the journal Nature, was written by Walsh; Alessandro Morbidelli of the Université de Nice, France; Sean N. Raymond of Université de Bordeaux, France; David P. O'Brien of Planetary Science Institute in Tucson, Ariz.; and Avi M. Mandell of NASA's Goddard Space Flight Center. The research was funded by the Helmholtz Alliance, the French National Center for Scientific Research and NASA.

Deb Schmid | EurekAlert!
Further information:
http://www.swri.org

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>