Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Splashdown

21.06.2013
On June 7, 2011, our Sun erupted, blasting tons of hot plasma into space. Some of that plasma splashed back down onto the Sun's surface, sparking bright flashes of ultraviolet light. This dramatic event may provide new insights into how young stars grow by sucking up nearby gas.
The eruption and subsequent splashdown were observed in spectacular detail by NASA's Solar Dynamics Observatory. This spacecraft watches the Sun 24 hours a day, providing images with better-than-HD resolution. Its Atmospheric Imaging Assembly instrument was designed and developed by researchers at the Harvard-Smithsonian Center for Astrophysics (CfA).

"We’re getting beautiful observations of the Sun. And we get such high spatial resolution and high cadence that we can see things that weren’t obvious before," says CfA astronomer Paola Testa.

Movies of the June 7th eruption show dark filaments of gas blasting outward from the Sun's lower right. Although the solar plasma appears dark against the Sun's bright surface, it actually glows at a temperature of about 18,000 degrees Fahrenheit. When the blobs of plasma hit the Sun's surface again, they heat up by a factor of 100 to a temperature of almost 2 million degrees F. As a result, those spots brighten in the ultraviolet by a factor of 2 – 5 over just a few minutes.

The tremendous energy release occurs because the in falling blobs are traveling at high speeds, up to 900,000 miles per hour (400 km/sec). Those speeds are similar to the speeds reached by material falling onto young stars as they grow via accretion. Therefore, observations of this solar eruption provide an "up close" view of what happens on distant stars.

"We often study young stars to learn about our Sun when it was an 'infant.' Now we’re doing the reverse and studying our Sun to better understand distant stars," notes Testa.

These new observations, combined with computer modeling, have helped resolve a decade-long argument over how to measure the accretion rates of growing stars. Astronomers calculate how fast a young star is gathering material by observing its brightness at various wavelengths of light, and how that brightness changes over time. However, they got higher estimates from optical and ultraviolet light than from X-rays.

The team discovered that the ultraviolet flashes they observed came from the in falling material itself, not the surrounding solar atmosphere. If the same is true for distant, young stars, then by analyzing the ultraviolet light they emit, we can learn about the material they are accreting.

"By seeing the dark spots on the Sun, we can learn about how young stars accrete material and grow." explains Testa.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

This photograph from NASA's Solar Dynamics Observatory catches the beginning of the eruption that took place on June 7, 2011. At lower right, dark filaments of solar plasma arc away from the Sun. The plasma lofted off, then rained back down to create "hot spots" that glowed in ultraviolet light. This representative-color image shows light at a wavelength of 171 Angstroms (17.1 nm).
Credit: NASA / SDO / P. Testa (CfA)

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu/news/2013/pr201316.html
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>