Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sifting out the sources of spin

02.11.2009
High-energy proton collisions help solve the puzzle of what determines the proton’s spin

Along with the neutron, the proton is the basic building block of the atomic nucleus. But, the source of the proton’s spin—a fundamental property, along with charge—has been a long standing puzzle to scientists.

By analyzing data from the BNL Relativistic Heavy Ion Collider (RHIC), the PHENIX collaboration at Brookhaven National Laboratory in Upton, USA, including scientists from the RIKEN BNL Research Center and the RIKEN Nishina Center for Accelerator-Based Science, has now ruled out gluons—the particles that exchange the so-called strong force between the quarks that make up the proton—as the dominant contributor to proton spin.

There are three quarks—two ‘up’ quarks and one ‘down’ quark— in the proton. Each quark has a spin of ½ and they configure with respect to each other—two up and one down—so the sum of their spins is ½. For this reason, scientists thought the spin of the proton, which is also ½, came entirely from quarks.

Experiments in the 1980s, however, showed that quarks only contribute about 25% of the total spin of the proton. “This result was so surprising that it was called the ‘spin-crisis’,” says Yasuyuki Akiba, a member of the PHENIX team. Particle physicists were therefore confronted with a fundamental question: What else contributes to the spin of the proton?

Some models predict that the missing spin comes mainly from gluons, while others suggest that the contribution from the orbital angular momentum of quarks within the proton may also be significant. To determine the contribution from gluons, the PHENIX team analyzed data from a year-long experiment performed at RHIC in 2006.

In this experiment, protons were collided at very high energies approximating 200 GeV, where 1 GeV is equal to one billion electron volts, to produce particles called pions. The researchers derived the gluon contribution to the proton spin from the difference between the number of pions produced by colliding protons with their spins lined up in the same direction to one another versus those lined up in opposite directions.

The important result from the PHENIX team’s work is that the gluon contribution to the proton spin is actually small. “The best estimate is that it is about 40%, but the data don’t rule out that it is zero,” explains Akiba. “Although there is still a significant uncertainty in this result, our data show that models predicting large gluon spin can now be firmly excluded.”

The corresponding author for this highlight is based at the Experimental Group, RIKEN BNL Research Center

Journal information

Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Aoki, K., Aphecetche, L., Asai, J. et al. (PHENIX Collaboration) Gluon-spin contribution to the proton spin from the double-helicity asymmetry in inclusive π0 production in polarized p + p collisions at √s = 200 GeV. Physical Review Letters 103, 012003 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6054
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>