Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sifting out the sources of spin

02.11.2009
High-energy proton collisions help solve the puzzle of what determines the proton’s spin

Along with the neutron, the proton is the basic building block of the atomic nucleus. But, the source of the proton’s spin—a fundamental property, along with charge—has been a long standing puzzle to scientists.

By analyzing data from the BNL Relativistic Heavy Ion Collider (RHIC), the PHENIX collaboration at Brookhaven National Laboratory in Upton, USA, including scientists from the RIKEN BNL Research Center and the RIKEN Nishina Center for Accelerator-Based Science, has now ruled out gluons—the particles that exchange the so-called strong force between the quarks that make up the proton—as the dominant contributor to proton spin.

There are three quarks—two ‘up’ quarks and one ‘down’ quark— in the proton. Each quark has a spin of ½ and they configure with respect to each other—two up and one down—so the sum of their spins is ½. For this reason, scientists thought the spin of the proton, which is also ½, came entirely from quarks.

Experiments in the 1980s, however, showed that quarks only contribute about 25% of the total spin of the proton. “This result was so surprising that it was called the ‘spin-crisis’,” says Yasuyuki Akiba, a member of the PHENIX team. Particle physicists were therefore confronted with a fundamental question: What else contributes to the spin of the proton?

Some models predict that the missing spin comes mainly from gluons, while others suggest that the contribution from the orbital angular momentum of quarks within the proton may also be significant. To determine the contribution from gluons, the PHENIX team analyzed data from a year-long experiment performed at RHIC in 2006.

In this experiment, protons were collided at very high energies approximating 200 GeV, where 1 GeV is equal to one billion electron volts, to produce particles called pions. The researchers derived the gluon contribution to the proton spin from the difference between the number of pions produced by colliding protons with their spins lined up in the same direction to one another versus those lined up in opposite directions.

The important result from the PHENIX team’s work is that the gluon contribution to the proton spin is actually small. “The best estimate is that it is about 40%, but the data don’t rule out that it is zero,” explains Akiba. “Although there is still a significant uncertainty in this result, our data show that models predicting large gluon spin can now be firmly excluded.”

The corresponding author for this highlight is based at the Experimental Group, RIKEN BNL Research Center

Journal information

Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Aoki, K., Aphecetche, L., Asai, J. et al. (PHENIX Collaboration) Gluon-spin contribution to the proton spin from the double-helicity asymmetry in inclusive π0 production in polarized p + p collisions at √s = 200 GeV. Physical Review Letters 103, 012003 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6054
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>