Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sifting out the sources of spin

02.11.2009
High-energy proton collisions help solve the puzzle of what determines the proton’s spin

Along with the neutron, the proton is the basic building block of the atomic nucleus. But, the source of the proton’s spin—a fundamental property, along with charge—has been a long standing puzzle to scientists.

By analyzing data from the BNL Relativistic Heavy Ion Collider (RHIC), the PHENIX collaboration at Brookhaven National Laboratory in Upton, USA, including scientists from the RIKEN BNL Research Center and the RIKEN Nishina Center for Accelerator-Based Science, has now ruled out gluons—the particles that exchange the so-called strong force between the quarks that make up the proton—as the dominant contributor to proton spin.

There are three quarks—two ‘up’ quarks and one ‘down’ quark— in the proton. Each quark has a spin of ½ and they configure with respect to each other—two up and one down—so the sum of their spins is ½. For this reason, scientists thought the spin of the proton, which is also ½, came entirely from quarks.

Experiments in the 1980s, however, showed that quarks only contribute about 25% of the total spin of the proton. “This result was so surprising that it was called the ‘spin-crisis’,” says Yasuyuki Akiba, a member of the PHENIX team. Particle physicists were therefore confronted with a fundamental question: What else contributes to the spin of the proton?

Some models predict that the missing spin comes mainly from gluons, while others suggest that the contribution from the orbital angular momentum of quarks within the proton may also be significant. To determine the contribution from gluons, the PHENIX team analyzed data from a year-long experiment performed at RHIC in 2006.

In this experiment, protons were collided at very high energies approximating 200 GeV, where 1 GeV is equal to one billion electron volts, to produce particles called pions. The researchers derived the gluon contribution to the proton spin from the difference between the number of pions produced by colliding protons with their spins lined up in the same direction to one another versus those lined up in opposite directions.

The important result from the PHENIX team’s work is that the gluon contribution to the proton spin is actually small. “The best estimate is that it is about 40%, but the data don’t rule out that it is zero,” explains Akiba. “Although there is still a significant uncertainty in this result, our data show that models predicting large gluon spin can now be firmly excluded.”

The corresponding author for this highlight is based at the Experimental Group, RIKEN BNL Research Center

Journal information

Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Aoki, K., Aphecetche, L., Asai, J. et al. (PHENIX Collaboration) Gluon-spin contribution to the proton spin from the double-helicity asymmetry in inclusive π0 production in polarized p + p collisions at √s = 200 GeV. Physical Review Letters 103, 012003 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6054
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>