Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking Dark Matter on a Desktop

16.03.2010
Desktop experiments could point the way to dark matter discovery, complementing grand astronomical searches and deep underground observations. According to recent theoretical results, small blocks of matter on a tabletop could reveal elusive properties of the as-yet-unidentified dark matter particles that make up a quarter of the universe, potentially making future large-scale searches easier.

This finding was announced today by theorists from the Stanford Institute for Materials and Energy Science (SIMES), a joint institute of the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University, at the American Physical Society meeting in Portland, Oregon.

"Tabletop experiments can be extremely illuminating," said condensed matter theorist Shoucheng Zhang, who published the results with SIMES colleagues Rundong Li, Jing Wang and Xiao-Liang Qi. "We can make observations in tabletop experiments that help us figure the deeper mysteries of the universe."

In a paper published in the March 7 online edition of Nature Physics, Zhang and his colleagues describe an experimental set-up that could detect for the first time the axion, a theoretical tiny, lightweight particle conjectured to permeate the universe. With its very small mass and lack of electric charge, the axion is a candidate for the mysterious dark matter particle. Yet, despite much effort, the axion has never been observed experimentally.

That may change thanks to the SIMES theorists’ forefront research into topological insulators. In this small, newly discovered subset of materials, electrons travel with great difficulty through the interior but flow with much less resistance on the surface, much as they can in superconductive materials. Even better, they do this at room temperature. This leads to unusual properties that may be important for applications such as spintronics, an emerging technology that could allow for a new class of low-power, high-density, superior-performance electronic devices.

In their research into other applications for topological insulators, Zhang and his colleagues discovered that the electromagnetic behavior of topological insulators is described by the very same mathematical equations that describe the behavior of axions; wondrously, the laws of the universe related to axions are mirrored in this new class of materials. As a result of this mathematical parallel, the theorists posit that experiments on topological insulators can reveal much about the axions that are predicted to pervade the universe.

“That both are described by the same mathematical equation is the beauty of physics,” said Zhang. “Mathematics is so powerful—it means we can study these things in topological insulators as if they were a baby universe.”

In their paper, Zhang and his colleagues describe one particular class of topological insulator in which the parallel mathematics related to axions is most apparent, and suggest several experiments that could be performed to “see” axions in the electromagnetic behavior of topological insulators. These experiments could offer additional insight into the physical characteristics of the axion, insight that would simplify the astronomical search by giving observers a better idea of where to look for evidence of the axion hidden behind the overall roar of the universe.

“If we ‘see’ an axion in a tabletop experiment, it will be extremely illuminating,” Zhang said. “It will help shed light on the dark matter mystery.”

The Stanford Institute for Materials and Energy Science, SIMES, is a joint institute of SLAC National Accelerator Laboratory and Stanford University. Research at SIMES is supported in part by the U.S. Department of Energy's Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

Kelen Tuttle | EurekAlert!
Further information:
http://www.slac.stanford.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>