Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for Primordial Antimatter

03.11.2008
Scientists are on the hunt for evidence of antimatter - matter's arch nemesis – left over from the very early Universe. New results using data from NASA's Chandra X-ray Observatory and Compton Gamma Ray Observatory suggest the search may have just become even more difficult.

Antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts --protons, neutrons and electrons -- but the opposite charges and magnetic properties. When matter and antimatter particles collide, they annihilate each other and produce energy according to Einstein's famous equation, E=mc2.

According to the Big Bang model, the Universe was awash in particles of both matter and antimatter shortly after the Big Bang. Most of this material annihilated, but because there was slightly more matter than antimatter - less than one part per billion - only matter was left behind, at least in the local Universe.

Trace amounts of antimatter are believed to be produced by powerful phenomena such as relativistic jets powered by black holes and pulsars, but no evidence has yet been found for antimatter remaining from the infant Universe.

How could any primordial antimatter have survived? Just after the Big Bang there was believed to be an extraordinary period, called inflation, when the Universe expanded exponentially in just a fraction of a second.

"If clumps of matter and antimatter existed next to each other before inflation, they may now be separated by more than the scale of the observable Universe, so we would never see them meet," said Gary Steigman of The Ohio State University, who conducted the study. "But, they might be separated on smaller scales, such as those of superclusters or clusters, which is a much more interesting possibility."

In that case, collisions between two galaxy clusters, the largest gravitationally-bound structures in the Universe, might show evidence for antimatter. X-ray emission shows how much hot gas is involved in such a collision. If some of the gas from either cluster has particles of antimatter, then there will be annihilation and the X-rays will be accompanied by gamma rays.

Steigman used data obtained by Chandra and Compton to study the so-called
Bullet Cluster, where two large clusters of galaxies have crashed into one another at extremely high velocities. At a relatively close distance and with a favorable side-on orientation as viewed from Earth, the Bullet Cluster provides an excellent test site to search for the signal for antimatter.

"This is the largest scale over which this test for antimatter has ever been done," said Steigman, whose paper was published in the Journal of Cosmology and Astroparticle Physics. "I'm looking to see if there could be any clusters of galaxies which are made of large amounts of antimatter."

The observed amount of X-rays from Chandra and the non-detection of gamma rays from the Compton data show that the antimatter fraction in the Bullet Cluster is less than three parts per million. Moreover, simulations of the Bullet Cluster merger show that these results rule out any significant amounts of antimatter over scales of about 65 million light years, an estimate of the original separation of the two colliding clusters.

"The collision of matter and antimatter is the most efficient process for generating energy in the Universe, but it just may not happen on very large scales," said Steigman. "But, I'm not giving up yet as I'm planning to look at other colliding galaxy clusters that have recently been discovered."

Finding antimatter in the Universe might tell scientists about how long the period of inflation lasted. "Success in this experiment, although a long shot, would teach us a lot about the earliest stages of the Universe," said Steigman.

Tighter constraints have been placed by Steigman on the presence of antimatter on smaller scales by looking at single galaxy clusters that do not involve such large, recent collisions.

The Compton Gamma Ray Observatory was in orbit from 1991 until 2000 when it was safely de-orbited. The data used in this result came from Compton's Energetic Gamma Ray Telescope, or EGRET, instrument. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Megan Watzke | Newswise Science News
Further information:
http://www.cfa.harvard.edu

Further reports about: Antimatter Big Bang Bullet Cluster Observatory Primordial Universe X-ray black hole galaxy cluster

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>