Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Shape First Global Topographic Map of Saturn’s Moon Titan

17.05.2013
Scientists have created the first global topographic map of Saturn’s moon Titan, giving researchers a valuable tool for learning more about one of the most Earthlike and interesting worlds in the solar system.

Titan is Saturn’s largest moon – at 1,600 miles (2,574 kilometers) across it’s bigger than planet Mercury – and is the second-largest in the solar system. Scientists care about Titan because it’s the only moon in the solar system known to have clouds, surface liquids and a mysterious, thick atmosphere.

The cold atmosphere is mostly nitrogen, like Earth’s, but methane on Titan acts the way water vapor does on Earth, forming clouds and falling as rain and carving the surface with rivers. Organic chemicals, derived from methane, are present in Titan’s atmosphere, lakes and rivers and may offer clues about the origins of life.

“Titan has so much interesting activity – like flowing liquids and moving sand dunes – but to understand these processes it’s useful to know how the terrain slopes,” says Ralph Lorenz, of the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., who led the map-design team. “It’s especially helpful to those studying hydrology and modeling Titan’s climate and weather, who need to know whether there is high ground or low ground driving their models.”

Titan’s thick haze scatters light in ways that make it very hard for remote cameras to “see” landscape shapes and shadows, the usual approach to measuring topography on planetary bodies. Virtually all the data we have on Titan comes from NASA’s Saturn-orbiting Cassini spacecraft, which has flown past the moon nearly 100 times over the past decade. On many of those flybys, Cassini has used a radar imager, which can peer through the haze, and the radar data can be used to estimate the surface height.

"With this new topographic map, one of the most fascinating and dynamic worlds in our solar system now pops out in 3-D," says Steve Wall, the deputy lead of Cassini's radar team, based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "On Earth, rivers, volcanoes, and even weather are closely related to heights of surfaces – we're now eager to see what we can learn from them on Titan."

There are challenges, however. “Cassini isn’t orbiting Titan,” Lorenz says. “We have only imaged about half of Titan’s surface, and multiple ‘looks’ or special observations are needed to estimate the surface heights. If you divided Titan into 1-degree by 1-degree [latitude and longitude] squares, only 11 percent of those squares have topography data in them.”

Lorenz’s team used a mathematical process called splining – effectively using smooth curved surfaces to “join” the areas between grids of existing data. “You can take a spot where there is no data, look how close it is to the nearest data, and use various approaches of averaging and estimating to calculate your best guess,” he says. “If you pick a point, and all the nearby points are high altitude, you’d need a special reason for thinking that point would be lower. We’re mathematically papering over the gaps in our coverage.”

The estimations fit with current knowledge of the moon – that its polar regions are “lower” than areas around the equator, for example – but connecting those points allows scientists to add new layers to their studies of Titan’s surface, especially those modeling how and where Titan’s rivers flow, and the seasonal distribution of its methane rainfall. “The movement of sands and the flow of liquids are influenced by slopes, and mountains can trigger cloud formation and therefore rainfall. This global product now gives modelers a convenient description of this key factor in Titan’s dynamic climate system,” Lorenz says.

The most recent data used to compile the map is from 2012; Lorenz says it could be worth revising when the Cassini mission ends in 2017, when more data will have accumulated, filling some of the gaps in present coverage. “We felt we couldn’t wait and should release an interim product,” he says. “The community has been hoping to get this for a while. I think it will stimulate a lot of interesting work.”

The map, as well as a paper on the project (“A Global Topography Map of Titan”), appear in the journal Icarus and are available online at: http://www.sciencedirect.com/science/article/pii/S0019103513001620.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and ASI, the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the US and several European countries.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology. For more information, visit www.jhuapl.edu.

Michael Buckley | New
Further information:
http://www.jhuapl.edu
http://www.jhuapl.edu/newscenter/pressreleases/2013/130515.asp

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>