Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists prove graphene's edge structure affects electronic properties

17.02.2009
Graphene, a single-atom-thick sheet of carbon, holds remarkable promise for future nanoelectronics applications. Whether graphene actually cuts it in industry, however, depends upon how graphene is cut, say researchers at the University of Illinois.

Graphene consists of a hexagonal lattice of carbon atoms. While scientists have predicted that the orientation of atoms along the edges of the lattice would affect the material's electronic properties, the prediction had not been proven experimentally.

Now, researchers at the U. of I. say they have proof.

"Our experimental results show, without a doubt, that the crystallographic orientation of the graphene edges significantly influences the electronic properties," said Joseph Lyding, a professor electrical and computer engineering. "To utilize nanometer-size pieces of graphene in future nanoelectronics, atomically precise control of the geometry of these structures will be required."

Lyding and graduate student Kyle Ritter (now at Micron Technology Inc. in Boise, Idaho) report their findings in a paper accepted for publication in Nature Materials. The paper is to be posted on the journal's Web site on Sunday (Feb. 15).

To carry out their work, the researchers developed a method for cutting and depositing nanometer-size bits of graphene on atomically clean semiconductor surfaces like silicon.

Then they used a scanning tunneling microscope to probe the electronic structure of the graphene with atomic-scale resolution.

"From this emerged a clear picture that edges with so-called zigzag orientation exhibited a strong edge state, whereas edges with armchair orientation did not," said Lyding, who also is affiliated with the university's Beckman Institute and the Micro and Nanotechnology Laboratory.

"We found that pieces of graphene smaller than about 10 nanometers with predominately zigzag edges exhibited metallic behavior rather than the semiconducting behavior expected from size alone," Lyding said. "This has major implications in that semiconducting behavior is mandatory for transistor fabrication."

Unlike carbon nanotubes, graphene is a flat sheet, and therefore compatible with conventional fabrication processes used by today's chipmakers. But, based on the researchers' experimental results, controlled engineering of the graphene edge structure will be required for obtaining uniform performance among graphene-based nanoelectronic devices.

"Even a tiny section of zigzag orientation on a 5-nanometer piece of graphene will change the material from a semiconductor into a metal," Lyding said. "And a transistor based on that, will not work. Period."

James E. Kloeppel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>