Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scaling up gyroscopes: From navigation to measuring the Earth's rotation

07.05.2013
Accurately sensing rotation is important to a variety of technologies, from today's smartphones to navigational instruments that help keep submarines, planes, and satellites on course.

In a paper accepted for publication in the American Institute of Physics' journal Review of Scientific Instruments, researchers from the Technical University of Munich and New Zealand's University of Canterbury discuss what are called "large ring laser gyroscopes" that are six orders of magnitude more sensitive than gyroscopes commercially available.

In part, the increased sensitivity comes from the scaled-up size – the largest of these gyroscopes encloses an area of 834 square meters – meaning these instruments are no longer compatible with navigation applications. In addition, a very involved series of corrections must be made when using these instruments to account for a variety of factors, including the gravitational attraction of the moon.

According to the researchers, however, the progress in these devices has made possible entirely new applications in geodesy, geophysics, seismology, and testing theories in fundamental physics such as the effects of general relativity.

Ring laser gyroscopes rely on laser beams propagating in opposite directions along the same closed loop or "ring." The beams interfere with one another forming a stable pattern, but that pattern shifts in direct proportion to the rotation rate of the whole laser-ring system (called the "Sagnac effect").

Large ring laser gyroscopes are attached to the Earth's crust so that a shift in that pattern (seen as an observed beat note in an actively lasing device) is directly proportional to the rotation rate of the Earth. Perturbations in that rotation rate capture the momentum exchange between the atmosphere, hydrosphere, and lithosphere, and so large ring laser gyroscopes could be used to indirectly monitor the combined effects of variations in global air and water currents, for example.

They may also be used both to supplement and improve calculations currently made with Very Long Baseline Interferometry (VLBI) techniques for measuring the orientation of the instantaneous rotation axis of the Earth and the length of day. Additionally, changes in the ring's orientation also shifts the beat note of the interferometer, making the large ring laser gyroscope useful for detecting tilts in the Earth's crust, which current seismometers cannot distinguish from horizontal acceleration.

Article: "Large Ring Lasers for Rotation Sensing" is accepted for publication in the journal Review of Scientific Instruments.

Link: http://rsi.aip.org/resource/1/rsinak/v84/i4/p041101_s1

Authors: Karl Ulrich Schreiber (1, 2), Jon-Paul R. Wells (2)
(1) Technical University of Munich (2) University of Canterbury

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>