Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Satellite reveals surprising cosmic 'weather' at edge of solar system

The first solar system energetic particle maps show an unexpected landmark occurring at the outer edge of the solar wind bubble surrounding the solar system. Scientists published these maps, based mostly on data collected from NASA's Interstellar Boundary Explorer satellite, in the Oct. 15 issue of Science Express, the advance online version of the journal Science.

"Nature is full of surprises, and IBEX has been lucky to discover one of those surprises," said Priscilla Frisch, a senior scientist in astronomy & astrophysics at the University of Chicago.

"The sky maps are dominated by a giant ribbon of energetic neutral atoms extending throughout the sky in an arc that is 300 degrees long." Energetic neutral atoms form when hot solar wind ions (charged particles) steal electrons from cool interstellar neutral atoms.

IBEX was launched Oct. 19, 2008, to produce the first all-sky maps of the heliosphere, which reaches far beyond the solar system's most distant planets. Extending more than 100 times farther than the distance from Earth to the sun, the heliosphere marks the region of outer space subjected to the sun's particle emissions.

The new maps show how high-speed cosmic particle streams collide and mix at the edge of the heliosphere, said Frisch, who co-authored three of a set of IBEX articles appearing in this week's Science Express. The outgoing solar wind blows at 900,000 miles an hour, crashing into a 60,000-mile-an-hour "breeze" of incoming interstellar gas.

Revealed in the IBEX data, but not predicted in the theoretical heliosphere simulations of three different research groups, was the ribbon itself, formed where the direction of the interstellar magnetic field draping over the heliosphere is perpendicular to the viewpoint of the sun.

Energetic protons create forces as they move through the magnetic field, and when the protons are bathed in interstellar neutrals, they produce energetic neutral atoms. "We're still trying to understand this unexpected structure, and we believe that the interstellar magnetic forces are associated with the enhanced ENA production at the ribbon," Frisch said.

IBEX shows that energetic neutral atoms are produced toward the north pole of the ecliptic (the plane traced by the orbit of the planets around the sun), as well as toward the heliosphere tail pointed toward the constellations of Taurus and Orion. "The particle energies change between the poles and tail, but surprisingly not in the ribbon compared to adjacent locations," Frisch said.

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorers space missions. Southwest Research Institute in San Antonio, Texas, leads and developed the mission with a team of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

Citations: N. A. Schwadron, M. Bzowski, G. B. Crew, M. Gruntman, H. Fahr, H. Fichtner, P. C. Frisch, H. O. Funsten, S. Fuselier, J. Heerikhuisen, V. Izmodenov, H. Kucharek, M. Lee, G. Livadiotis, D. J. McComas, E. Moebius, T. Moore, J. Mukherjee, N.V. Pogorelov, C. Prested, D. Reisenfeld, E. Roelof, G.P. Zank, "Comparison of Interstellar Boundary Explorer Observations with 3-D Global Heliospheric Models," Science Express, Oct. 15, 2009.

H.O. Funsten, F. Allegrini, G.B. Crew, R. DeMajistre, P.C. Frisch, S.A. Fuselier, M. Gruntman, P. Janzen, D.J. McComas, E. Möbius, B. Randol, D.B. Reisenfeld, E.C. Roelof, N.A. Schwadron, "Structures and Spectral Variations of the Outer Heliosphere in IBEX Energetic Neutral Atom Maps," Science Express, Oct. 15, 2009.

D.J. McComas, F. Allegrini1, P. Bochsler, M. Bzowski, E.R. Christian, G.B.Crew, R. DeMajistre, H. Fahr, H. Fichtner, P.C. Frisch, H.O. Funsten, S. A. Fuselier, G. Gloeckler, M. Gruntman, J. Heerikhuisen, V. Izmodenov, P.J anzen, P. Knappenberger, S. Krimigis, H. Kucharek, M. Lee, G. Livadiotis, S. Livi, R.J. MacDowall, D. Mitchell, E. Möbius, T. Moore, N.V. Pogorelov, D. Reisenfeld, E. Roelof, L. Saul, N.A. Schwadron, P.W. Valek, R. Vanderspek, P. Wurz, G.P. Zank, "Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer-IBEX", Science Express, Oct. 15, 2009.

Related links:

Animation shows how energetic neutral atoms are made in the heliosheath when hot solar wind protons grab an electron from a cold interstellar gas atom. The ENAs can then easily travel back into the solar system, where some are collected by IBEX. Credit: NASA/GSFC

Solar Journey: The Significant of Our Galactic Environment for the Heliosphere and Earth, Priscilla C. Frisch, editor.

IBEX Web page at Southwest Research Institute

NASA's Interstellar Boundary Explorer mission

To view a video related to this research, please visit

Steve Koppes | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>