Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s Cold and Wet at the Moon’s South Pole

22.10.2010
Frozen water just inches below the moon’s surface has been confirmed by an international team of scientists including University of Arizona professor William Boynton.

Based on data the group obtained with an instrument aboard the Lunar Reconnaissance Orbiter, or LRO, NASA chose the impact site for the LCROSS probe, which slammed into the moon's surface last year in October in an attempt to kick up dust that could be analyzed for the presence of water ice.

The group's findings were obtained separately from the impact experiment and are published in the Oct. 22 issue of Science, which highlights results from the LRO/LCROSS mission in six scientific papers.

"We found significant amounts of water around the north and south poles, in places where previously we were only tentatively thinking of it," said William Boynton, professor in the UA's department of planetary sciences and the UA's Lunar and Planetary Lab.

In addition to confirming water and its distribution in unprecedented detail, the data included an unexpected finding.

"To our surprise, some of the permanently shadowed regions had no water, but some of the areas that receive sunlight occasionally did have water," Boynton said.

In other words, water was found not only where it is supposed to be, but also where it is not supposed to be.

Previously, scientists were convinced water ice could only persist in so-called Permanently Shadowed Regions, or PSRs, places on the moon's surface the sun never reaches. Unlike Earth, whose tilted axis ensures that any spot on the surface receives at least some sunlight at some point during the planet's yearlong journey around the sun, the moon's axis is hardly tilted at all. As a result, some places on the lunar surface are never exposed to sunlight.

"In some of the craters that are close to the north or south pole and have very steep walls, no direct sunlight ever reaches the bottom of the crater," Boynton said.

"At down to -370 degrees Fahrenheit, those PSRs are colder than Pluto, even at noon," added Karl Harshman, a software engineer with the Lunar and Planetary Lab.

But according to the measurements the group obtained using the Lunar Exploration Neutron Detector, or LEND, aboard the LRO spacecraft orbiting the moon, there is water even in areas that are exposed to the sun's warming rays every once in a while. Conversely, some of the PSRs turned out to be completely dry.

The data also helped to obtain a more detailed picture of water distribution on the moon.

"The data we obtained in the first three months of the mission helped LCROSS select the impact site," said Gerard Droege, a data analyst in Boynton's group who created the visual representations of the data. "It gave mission control just enough time to tweak the trajectory, and everybody then said, OK, we're going for Cabeus."

"Previous instruments could only tell us that the whole area around the poles is enriched, now our knowledge is much more spatially refined," Boynton said.

To trace the abundance of water on the moon, the scientists took advantage of cosmic particles constantly bombarding every object in space. Since the moon lacks a protective atmosphere, the particles strike the surface close to the speed of light. When they collide with the atomic nuclei in the dusty soil they knock particles off these atoms, mostly protons and neutrons, some of which escape into space. If one of these particles hits a hydrogen atom, which is most likely part of a water molecule, it slows down dramatically, leaving fewer particles fast enough to escape to space.

By measuring differences in the flow of neutrons coming from the moon's surface, the researchers were able to infer the amount of water present in the soil: Areas emitting low neutron radiation indicated water capturing and retaining most of the neutrons, while areas reflecting high neutron radiation identified themselves as dry.

In the PSRs near the impact site in the Cabeus crater near the Moon's south pole, the soil was found to contain up to four percent water.

"The water might be like some form of ice mixed in with the soil, possibly similar to the slightly damp, frozen soil found in Alaska," Boynton said. "We think that in the PSRs, water ice might be present on the surface, but the fact we found it in the partially sunlit areas, too, means the upper three inches or so must be dry dirt, otherwise the sunlight would cause the water to evaporate."

Possible origins of the water on the moon include impacts of icy comets or hydrogen deposited from solar wind, the authors noted.

The study was led by Igor Mitrofanov at the Institute for Space Research of the Russian Academy of Science in Moscow, the agency that supplied the LEND instrument used in this study. LRO is managed by NASA's Goddard Space Flight Center in Greenbelt, Md.

Media Contact:
William Boynton, Lunar and Planetary Lab, The University of Arizona: wboynton@lpl.arizona.edu, 520-621-6941
Daniel Stolte, University Communications:
stolte@email.arizona.edu, 520-626-4402

Daniel Stolte | University of Arizona
Further information:
http://www.lpl.arizona.edu/~karl/
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>