Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice physicists help unravel mystery of repetitive DNA segments

07.12.2010
With new tools that can grab individual strands of DNA and stretch them like rubber bands, Rice University scientists are working to unravel a mystery of modern genomics. Their latest findings, which appear in Physical Review Letters, offer new clues about the physical makeup of odd segments of DNA that have just one DNA base, adenine, repeated dozens of times in a row.

These mysterious "poly(dA) repeats" are sprinkled throughout the human genome. Scientists have also found them in the genomes of animals, plants and other species over the past decade. But researchers do not know why they are there, what function they perform or why they occur only with the DNA base adenine and not the other three DNA bases -- cytosine, guanine and thymine.

"Previous investigations of poly(dA) have suggested that adenine bases stack in a very uniform way," said Ching-Hwa Kiang, a co-author of the new study and assistant professor of physics and astronomy at Rice. "Our investigation focused on what happens when single strands of poly(dA) were stretched and these stacks were pulled apart."

Kiang's research group specializes in studying the physical and mechanical properties of proteins and nucleic acids, and their primary tool is one of the mainstays of nanotechnology research -- the atomic force microscope, or AFM. The business end of an AFM is like a tiny phonograph needle. The tip of the needle is no more than a few atoms wide, and the needle is at the end of an arm that bobs up and down over the surface of what is being measured. While nanotechnologists use the device to measure the thickness of samples, Kiang's group uses it in a different way.

To begin her experiments, Kiang first places a thin coating of the proteins she wishes to study on a flat surface. This is placed under the AFM arm so the bobbing AFM needle can dip down and grab the ends of one of the proteins. As the arm retracts, it unravels the protein.

All proteins fold into a characteristic shape. Like tiny springs, they remain in this compact "lowest energy" state unless they are pried apart.

The new study on poly(dA) was conducted by Kiang, Rice graduate student Wuen-shiu Chen and colleagues at Rice and National Chung Hsing University (NCHU) in Taiwan. The team discovered that poly(dA) behaves differently depending upon the speed with which it is stretched. When the AFM bobbed rapidly, the poly(dA) segments behaved like any other segment of single-stranded DNA. But when the AFM motion was slowed, the team found that the amount of force required to stretch the poly(dA) changed. At two particular locations, the strand lengthened for a short distance without any additional force at all.

"Typically, single strands of DNA behave like a rubber band: The resistance increases as they stretch, meaning you have to pull harder and harder to continue stretching them," Kiang said. "With poly(dA), we found these two points where that doesn't apply. It's as if you have to pull harder and harder, and then for a brief time, the band stretches with no additional force whatsoever."

Kiang said the exact causes and implications of the phenomenon are unclear. But scientists know that double-stranded DNA must be pried apart at discrete locations so that the cell's machinery can read the genetic code and convert it into proteins. There has been some speculation that the adenine repeats play a role in ordering genomic information; Kiang said the new findings raise even more questions about the role the repeats might play in gene regulation and genome packaging and how they might be potential targets for cancer drugs.

The research was supported by the National Science Foundation, the Welch Foundation and the Rice Institute of Biosciences and Bioengineering's Hamill Innovation Fund. Study co-authors include Rice undergraduate students Zephan Chen and Ashton Gooding, exchange graduate student Wei-Hung Chen from NCHU and NCHU Professor of Chemistry Kuan-Jiuh Lin.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>