Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock secret of the rare 'twinned rainbow'

07.08.2012
Scientists have yet to fully unravel the mysteries of rainbows, but a group of researchers from Disney Research, Zürich, UC San Diego, Universidad de Zaragoza, and Horley, UK, have used simulations of these natural wonders to unlock the secret to a rare optical phenomenon known as the twinned rainbow.

Unlike the more common double-rainbow, which consists of two separate and concentric rainbow arcs, the elusive twinned rainbow appears as two rainbows arcs that split from a single base rainbow. Sometimes it is even observed in combination with a double rainbow.

It is well-known that rainbows are caused by the interaction of sunlight with small water drops in the atmosphere; however, even though the study of rainbows can be traced back more than 2,000 years to the days of Aristotle, their complete and often complex behavior has not been fully understood until now.

"Everyone has seen rainbows, even double-rainbows, and they continue to fascinate the scientific community," said Dr. Wojciech Jarosz, co-author of the paper and Research Scientist at Disney Research, Zürich. "Sometimes, when the conditions are just right, we can observe extremely exotic rainbows, such as a twinned rainbow. Until now, no one has really known why such rainbows occur."

Jarosz and the international team of researchers studied virtual rainbows in simulation, considering the physical shape of water drops, and their complex interactions with both the particle and wave-nature of light. The key to the twinned rainbow mystery, Jarosz said, is the combination of different sizes of water drops falling from the sky.

"Previous simulations have assumed that raindrops are spherical. While this can easily explain the rainbow and even the double rainbow, it cannot explain the twinned rainbow," he said. Real raindrops flatten as they fall, due to air resistance, and this flattening is more prominent in larger water drops. Such large drops end up resembling the shape of hamburgers, and are therefore called "burgeroids".

"Sometimes two rain showers combine," Jarosz said. "When the two are composed of different sized raindrops, each set of raindrops produces slightly deformed rainbows, which combine to form the elusive twinned rainbow." The team developed software able to reproduce these conditions in simulation and the results matched, for the first time, twinned rainbows seen in photographs. The team also simulated a vast array of other rainbows matching photographs.

The team's discovery was unintentional. "Initially the goal was to better depict rainbows for animated movies and video games and we thought rainbows were pretty well understood," said Jarosz. "Along the way we discovered that science and current simulation methods simply could not explain some types of rainbows. This mystery really fueled our investigations." The researchers now see potentially wider application of their method beyond computer graphics, speculating that, some day, accurate rendering models of atmospheric phenomena, like the one they developed, could have impact in areas such as meteorology for deducing the size of water drops from videos or photographs.

The research findings by will be presented Aug. 8 in the "Physics and Mathematics for Light" session at SIGGRAPH 2012, the International Conference on Computer Graphics and Interactive Techniques at the Los Angeles Convention Center. For a copy of the research paper, please visit the project web site at http://zurich.disneyresearch.com/~wjarosz/publications/sadeghi11physically.html.

About Disney Research

Disney Research is a network of research laboratories supporting The Walt Disney Company. Its purpose is to pursue scientific and technological innovation to advance the company's broad media and entertainment efforts. Disney Research is managed by an internal Disney Research Council co-chaired by Disney-Pixar's Ed Catmull and Walt Disney Imagineering's Bruce Vaughn, and including the directors of the individual labs. It has facilities in Los Angeles, San Francisco, Pittsburgh, Boston and Zurich. Research topics include computer graphics, video processing, computer vision, robotics, radio and antennas, wireless communications, human-computer interaction, displays, data mining, machine learning and behavioral sciences.

Jennifer Liu | EurekAlert!
Further information:
http://www.disney.com
http://zurich.disneyresearch.com/~wjarosz/publications/sadeghi11physically.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>