Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research questions reality of 'supersolid' in Helium-4

18.05.2011
Alternative explanation for exotic state of matter posited in new Science paper

The long-held, but unproven idea that helium-4 enters into an exotic phase of matter dubbed a "supersolid" when cooled to extremely low temperatures has been challenged in a new paper published recently in Science.

Los Alamos National Laboratory researchers Alexander Balatsky and Matthias Graf joined Cornell University physicist J.C. Séamus Davis and others in describing an alternative explanation for behavior of helium-4 that led scientist to believe for nearly 40 years that the substance could hold properties of a liquid and solid at the same time when cooled to near Absolute Zero.

Helium-4 is the same gas used to fill carnival balloons. When cooled to temperatures below minus 452 degrees below zero Fahrenheit, helium-4 becomes a liquid—and an extraordinary liquid at that. At very low temperatures, helium-4 can become a “superfluid,” a liquid without viscosity that can flow unhampered by friction.

When placed under pressure at these low temperatures, helium-4 atoms arrange in an orderly lattice, or solid, which physicists nearly 40 years ago believed could behave in a similarly frictionless manner as a supersolid—a unique theoretical state of matter in which a bulk lattice of material could move as a single frictionless object.

Physicists came to the idea that helium-4 becomes a supersolid after oscillating liquid helium-4 back and forth in a special apparatus that measured the rotational speed. When the researchers measured these motions under conditions that would induce a solid form of helium-4, they noticed that the oscillation speed increased slightly, as if some part of the mass had come loose and was uninhibited by interaction with the rest of material. This effect was interpreted as evidence of supersolidity, a phase in which some of the mass of a solid does not move with the rest of solid lattice, but rather flows freely through the lattice.

Los Alamos researchers Balatsky and Graf posited that the effect could be described by an entirely different explanation. They believed the change in oscillation speed could have arisen as the result of a gradual "freezing out" of imperfections within the helium-4 lattice. To illustrate on a very basic level, Balatsky uses a rotating egg.

A fresh egg is a mixture of yolk and albumen within a shell. When spun, the interaction of the liquid within the eggshell results in a relatively slow rotation. If the egg is frozen, however, the imperfections within the shell freeze out, and the egg spins much faster—like the increase in oscillation speed observed in the early torsional oscillation experiments.

To test this simplified analogy, Balatsky, Davis and colleagues devised an experiment using a torsional oscillator that was 10,000 times more sensitive than the ones used in previous experiments. The researchers looked at results of varying temperature at a constant oscillation speed versus results of varying oscillation speeds at constant temperature. They compared the microscopic excitations within solid helium-4 under both conditions and found that the plotted curves were nearly identical.

Perhaps more significantly, the researchers didn’t see a sudden, clearly demarked change in the relaxation of microscopic defects at some "critical temperature" during their experiments. Lack of such a sharp demarcation provides evidence against a change in phase of helium-4 to a supersolid.

Instead, it suggests that the earlier observed behavior was the result of everyday physics rather than some exotic behavior.

"While this experiment does not definitively rule out the possibility of the formation of a supersolid in helium-4, the fact that we have provided a reasonable alternative explanation for the observed behavior in earlier experiments weakens the argument that what was being seen was a phase change to a supersolid," Balatsky said.

In addition to Los Alamos researchers Balatsky and Graf, and Cornell physicist Davis, co-authors of the paper include: Ethan Pratt, formerly of Cornell, but now at the National Institute of Standards and Technology; Ben Hunt and graduate student Vikram Gadagkar at the Massachusetts Institute of Technology; and Minoru Yamashita at Kyoto University.

Los Alamos National Laboratory’s Center for Integrated Nanotechnology, a U.S. Department of Energy Office of Basic Energy Sciences user facility, and Laboratory-Directed Research and Development (LDRD) Program funded the work at Los Alamos. Other funding came from the Kavli Institute for Theoretical Physics and the National Science Foundation.

The Science paper may be found here: http://www.sciencemag.org/content/332/6031/821.full

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

LANL news media contact: James E. Rickman, (505) 665-9203, jamesr@lanl.gov

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>