Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research questions reality of 'supersolid' in Helium-4

Alternative explanation for exotic state of matter posited in new Science paper

The long-held, but unproven idea that helium-4 enters into an exotic phase of matter dubbed a "supersolid" when cooled to extremely low temperatures has been challenged in a new paper published recently in Science.

Los Alamos National Laboratory researchers Alexander Balatsky and Matthias Graf joined Cornell University physicist J.C. Séamus Davis and others in describing an alternative explanation for behavior of helium-4 that led scientist to believe for nearly 40 years that the substance could hold properties of a liquid and solid at the same time when cooled to near Absolute Zero.

Helium-4 is the same gas used to fill carnival balloons. When cooled to temperatures below minus 452 degrees below zero Fahrenheit, helium-4 becomes a liquid—and an extraordinary liquid at that. At very low temperatures, helium-4 can become a “superfluid,” a liquid without viscosity that can flow unhampered by friction.

When placed under pressure at these low temperatures, helium-4 atoms arrange in an orderly lattice, or solid, which physicists nearly 40 years ago believed could behave in a similarly frictionless manner as a supersolid—a unique theoretical state of matter in which a bulk lattice of material could move as a single frictionless object.

Physicists came to the idea that helium-4 becomes a supersolid after oscillating liquid helium-4 back and forth in a special apparatus that measured the rotational speed. When the researchers measured these motions under conditions that would induce a solid form of helium-4, they noticed that the oscillation speed increased slightly, as if some part of the mass had come loose and was uninhibited by interaction with the rest of material. This effect was interpreted as evidence of supersolidity, a phase in which some of the mass of a solid does not move with the rest of solid lattice, but rather flows freely through the lattice.

Los Alamos researchers Balatsky and Graf posited that the effect could be described by an entirely different explanation. They believed the change in oscillation speed could have arisen as the result of a gradual "freezing out" of imperfections within the helium-4 lattice. To illustrate on a very basic level, Balatsky uses a rotating egg.

A fresh egg is a mixture of yolk and albumen within a shell. When spun, the interaction of the liquid within the eggshell results in a relatively slow rotation. If the egg is frozen, however, the imperfections within the shell freeze out, and the egg spins much faster—like the increase in oscillation speed observed in the early torsional oscillation experiments.

To test this simplified analogy, Balatsky, Davis and colleagues devised an experiment using a torsional oscillator that was 10,000 times more sensitive than the ones used in previous experiments. The researchers looked at results of varying temperature at a constant oscillation speed versus results of varying oscillation speeds at constant temperature. They compared the microscopic excitations within solid helium-4 under both conditions and found that the plotted curves were nearly identical.

Perhaps more significantly, the researchers didn’t see a sudden, clearly demarked change in the relaxation of microscopic defects at some "critical temperature" during their experiments. Lack of such a sharp demarcation provides evidence against a change in phase of helium-4 to a supersolid.

Instead, it suggests that the earlier observed behavior was the result of everyday physics rather than some exotic behavior.

"While this experiment does not definitively rule out the possibility of the formation of a supersolid in helium-4, the fact that we have provided a reasonable alternative explanation for the observed behavior in earlier experiments weakens the argument that what was being seen was a phase change to a supersolid," Balatsky said.

In addition to Los Alamos researchers Balatsky and Graf, and Cornell physicist Davis, co-authors of the paper include: Ethan Pratt, formerly of Cornell, but now at the National Institute of Standards and Technology; Ben Hunt and graduate student Vikram Gadagkar at the Massachusetts Institute of Technology; and Minoru Yamashita at Kyoto University.

Los Alamos National Laboratory’s Center for Integrated Nanotechnology, a U.S. Department of Energy Office of Basic Energy Sciences user facility, and Laboratory-Directed Research and Development (LDRD) Program funded the work at Los Alamos. Other funding came from the Kavli Institute for Theoretical Physics and the National Science Foundation.

The Science paper may be found here:

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

LANL news media contact: James E. Rickman, (505) 665-9203,

James E. Rickman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>



Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

More VideoLinks >>>