Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research questions reality of 'supersolid' in Helium-4

Alternative explanation for exotic state of matter posited in new Science paper

The long-held, but unproven idea that helium-4 enters into an exotic phase of matter dubbed a "supersolid" when cooled to extremely low temperatures has been challenged in a new paper published recently in Science.

Los Alamos National Laboratory researchers Alexander Balatsky and Matthias Graf joined Cornell University physicist J.C. Séamus Davis and others in describing an alternative explanation for behavior of helium-4 that led scientist to believe for nearly 40 years that the substance could hold properties of a liquid and solid at the same time when cooled to near Absolute Zero.

Helium-4 is the same gas used to fill carnival balloons. When cooled to temperatures below minus 452 degrees below zero Fahrenheit, helium-4 becomes a liquid—and an extraordinary liquid at that. At very low temperatures, helium-4 can become a “superfluid,” a liquid without viscosity that can flow unhampered by friction.

When placed under pressure at these low temperatures, helium-4 atoms arrange in an orderly lattice, or solid, which physicists nearly 40 years ago believed could behave in a similarly frictionless manner as a supersolid—a unique theoretical state of matter in which a bulk lattice of material could move as a single frictionless object.

Physicists came to the idea that helium-4 becomes a supersolid after oscillating liquid helium-4 back and forth in a special apparatus that measured the rotational speed. When the researchers measured these motions under conditions that would induce a solid form of helium-4, they noticed that the oscillation speed increased slightly, as if some part of the mass had come loose and was uninhibited by interaction with the rest of material. This effect was interpreted as evidence of supersolidity, a phase in which some of the mass of a solid does not move with the rest of solid lattice, but rather flows freely through the lattice.

Los Alamos researchers Balatsky and Graf posited that the effect could be described by an entirely different explanation. They believed the change in oscillation speed could have arisen as the result of a gradual "freezing out" of imperfections within the helium-4 lattice. To illustrate on a very basic level, Balatsky uses a rotating egg.

A fresh egg is a mixture of yolk and albumen within a shell. When spun, the interaction of the liquid within the eggshell results in a relatively slow rotation. If the egg is frozen, however, the imperfections within the shell freeze out, and the egg spins much faster—like the increase in oscillation speed observed in the early torsional oscillation experiments.

To test this simplified analogy, Balatsky, Davis and colleagues devised an experiment using a torsional oscillator that was 10,000 times more sensitive than the ones used in previous experiments. The researchers looked at results of varying temperature at a constant oscillation speed versus results of varying oscillation speeds at constant temperature. They compared the microscopic excitations within solid helium-4 under both conditions and found that the plotted curves were nearly identical.

Perhaps more significantly, the researchers didn’t see a sudden, clearly demarked change in the relaxation of microscopic defects at some "critical temperature" during their experiments. Lack of such a sharp demarcation provides evidence against a change in phase of helium-4 to a supersolid.

Instead, it suggests that the earlier observed behavior was the result of everyday physics rather than some exotic behavior.

"While this experiment does not definitively rule out the possibility of the formation of a supersolid in helium-4, the fact that we have provided a reasonable alternative explanation for the observed behavior in earlier experiments weakens the argument that what was being seen was a phase change to a supersolid," Balatsky said.

In addition to Los Alamos researchers Balatsky and Graf, and Cornell physicist Davis, co-authors of the paper include: Ethan Pratt, formerly of Cornell, but now at the National Institute of Standards and Technology; Ben Hunt and graduate student Vikram Gadagkar at the Massachusetts Institute of Technology; and Minoru Yamashita at Kyoto University.

Los Alamos National Laboratory’s Center for Integrated Nanotechnology, a U.S. Department of Energy Office of Basic Energy Sciences user facility, and Laboratory-Directed Research and Development (LDRD) Program funded the work at Los Alamos. Other funding came from the Kavli Institute for Theoretical Physics and the National Science Foundation.

The Science paper may be found here:

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

LANL news media contact: James E. Rickman, (505) 665-9203,

James E. Rickman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>



Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

More VideoLinks >>>