Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Report of Real-Time Manipulation and Control of Nuclear Spin Noise

26.08.2013
Basel Physicists in collaboration with Dutch researchers have demonstrated a new method for polarizing nuclear spins in extremely small samples.

By Monitoring and controlling spin fluctuations, the method may provide a route for enhancing the resolution of magnetic resonance imaging (MRI) on the nanometer-scale, allowing researchers to make 3D images of smaller objects than ever before. The results have been published in the journal «Nature Physics».

Many of the elements that make up the matter around us, such as hydrogen or phosphorus, contain a magnetic nucleus at the center of each atom. This nucleus acts like a tiny magnet with a north and south pole. By applying a large magnetic field, the poles of these nuclei align along the magnetic field, producing a so-called nuclear spin polarization.

When the nuclei are irradiated with electromagnetic impulses (radio waves) at a very specific frequency, they change their direction away from the magnetic field. Because they are magnetic, the nuclei then start turning back. As they do so, they emit the energy they had previously absorbed through the radio waves. With a special antenna these signals can be detected.

This method is called nuclear magnetic resonance (NMR) and can provide very useful information about a sample, such as its chemical composition or structure. The method also forms the basis of magnetic resonance imaging (MRI), which can make 3D images of the density of an object and is often used on patients in hospitals.

However, for very small objects (i.e. smaller than a single cell) containing a small number of nuclei, the natural fluctuations of the nuclear spin polarization actually become larger than the polarization produced by a large magnetic field. These deviations are known as «spin noise». The fact that spin noise is so dominant at small scales is one of the reasons why measuring NMR and MRI in very small objects is so difficult.

Monitoring, controlling and capturing
The team led by Prof. Martino Poggio from the University of Basel in Switzerland has now demonstrated, together with scientists from Eindhoven University of Technology and Delft University of Technology in the Netherlands, a method for creating polarization order from such random fluctuations. By monitoring, controlling, and capturing statistical spin fluctuations, the team produced polarizations that were much larger than what can be created by applying a magnetic field.

This is the first report of the real-time manipulation, control, and capture of fluctuations arising from nuclear spin noise. The results are immediately relevant to recent technical advances that have dramatically reduced the possible detection volumes of NMR measurements. «Improved understanding of these phenomena may lead to new high resolution nano- and atomic-scale imaging techniques», explains Poggio, Argovia Nanotechnology Professor at the Swiss Nanoscience Institute. The Basel method may provide a route for enhancing the sensitivity of nanometer-scale magnetic resonance imaging (MRI) or possibly for the implementation of solid-state quantum computers.

Further Implications
The method’s ability to reduce nuclear spin polarization fluctuations may also be useful to enhance the coherence time of solid-state qubits. Qubits are units of quantum information used in quantum computers. Qubits implemented in the solid-state – especially in structures called quantum dots – are very susceptible to fluctuations in nuclear polarization: even tiny variations in the nuclear polarization destroy a qubit’s coherence. Therefore, the ability to control these fluctuations may extend qubit coherence times and thus help in the on-going development of solid-state quantum computers. Poggio points out that his «approach to capture and store spin fluctuations is generally applicable to any technique capable of detecting and addressing nanometer-scale volumes of nuclear spins in real-time».

The study was supported by the Canton Aargau, the Swiss National Science Foundation (SNF), the Swiss Nanoscience Institute (SNI), and the National Center of Competence in Research for Quantum Science and Technology (QSIT).

Original Citation
P. Peddibhotla, F. Xue, H. I. T. Hauge, S. Assali, E. P. A. M. Bakkers, M. Poggio
Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire
Nature Physics (2013) | doi: 10.1038/nphys2731
Further Information
Prof. Martino Poggio, University of Basel, Department of Physics, Tel: +41 61 267 37 61, Mob: +41 79 452 81 97, E-Mail: martino.poggio@unibas.ch

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2731.html

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>