Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Report of Real-Time Manipulation and Control of Nuclear Spin Noise

26.08.2013
Basel Physicists in collaboration with Dutch researchers have demonstrated a new method for polarizing nuclear spins in extremely small samples.

By Monitoring and controlling spin fluctuations, the method may provide a route for enhancing the resolution of magnetic resonance imaging (MRI) on the nanometer-scale, allowing researchers to make 3D images of smaller objects than ever before. The results have been published in the journal «Nature Physics».

Many of the elements that make up the matter around us, such as hydrogen or phosphorus, contain a magnetic nucleus at the center of each atom. This nucleus acts like a tiny magnet with a north and south pole. By applying a large magnetic field, the poles of these nuclei align along the magnetic field, producing a so-called nuclear spin polarization.

When the nuclei are irradiated with electromagnetic impulses (radio waves) at a very specific frequency, they change their direction away from the magnetic field. Because they are magnetic, the nuclei then start turning back. As they do so, they emit the energy they had previously absorbed through the radio waves. With a special antenna these signals can be detected.

This method is called nuclear magnetic resonance (NMR) and can provide very useful information about a sample, such as its chemical composition or structure. The method also forms the basis of magnetic resonance imaging (MRI), which can make 3D images of the density of an object and is often used on patients in hospitals.

However, for very small objects (i.e. smaller than a single cell) containing a small number of nuclei, the natural fluctuations of the nuclear spin polarization actually become larger than the polarization produced by a large magnetic field. These deviations are known as «spin noise». The fact that spin noise is so dominant at small scales is one of the reasons why measuring NMR and MRI in very small objects is so difficult.

Monitoring, controlling and capturing
The team led by Prof. Martino Poggio from the University of Basel in Switzerland has now demonstrated, together with scientists from Eindhoven University of Technology and Delft University of Technology in the Netherlands, a method for creating polarization order from such random fluctuations. By monitoring, controlling, and capturing statistical spin fluctuations, the team produced polarizations that were much larger than what can be created by applying a magnetic field.

This is the first report of the real-time manipulation, control, and capture of fluctuations arising from nuclear spin noise. The results are immediately relevant to recent technical advances that have dramatically reduced the possible detection volumes of NMR measurements. «Improved understanding of these phenomena may lead to new high resolution nano- and atomic-scale imaging techniques», explains Poggio, Argovia Nanotechnology Professor at the Swiss Nanoscience Institute. The Basel method may provide a route for enhancing the sensitivity of nanometer-scale magnetic resonance imaging (MRI) or possibly for the implementation of solid-state quantum computers.

Further Implications
The method’s ability to reduce nuclear spin polarization fluctuations may also be useful to enhance the coherence time of solid-state qubits. Qubits are units of quantum information used in quantum computers. Qubits implemented in the solid-state – especially in structures called quantum dots – are very susceptible to fluctuations in nuclear polarization: even tiny variations in the nuclear polarization destroy a qubit’s coherence. Therefore, the ability to control these fluctuations may extend qubit coherence times and thus help in the on-going development of solid-state quantum computers. Poggio points out that his «approach to capture and store spin fluctuations is generally applicable to any technique capable of detecting and addressing nanometer-scale volumes of nuclear spins in real-time».

The study was supported by the Canton Aargau, the Swiss National Science Foundation (SNF), the Swiss Nanoscience Institute (SNI), and the National Center of Competence in Research for Quantum Science and Technology (QSIT).

Original Citation
P. Peddibhotla, F. Xue, H. I. T. Hauge, S. Assali, E. P. A. M. Bakkers, M. Poggio
Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire
Nature Physics (2013) | doi: 10.1038/nphys2731
Further Information
Prof. Martino Poggio, University of Basel, Department of Physics, Tel: +41 61 267 37 61, Mob: +41 79 452 81 97, E-Mail: martino.poggio@unibas.ch

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2731.html

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>