Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voyager 2 Proves the Solar System is Squashed

12.12.2007
NASA's Voyager 2 spacecraft has followed its twin Voyager 1 into the solar system's final frontier, a vast region at the edge of our solar system where the solar wind runs up against the thin gas between the stars.

However, Voyager 2 took a different path, entering this region, called the heliosheath, on August 30, 2007. Because Voyager 2 crossed the heliosheath boundary, called the solar wind termination shock, about 10 billion miles away from Voyager 1 and almost a billion miles closer to the sun, it confirmed that our solar system is “squashed” or “dented”– that the bubble carved into interstellar space by the solar wind is not perfectly round. Where Voyager 2 made its crossing, the bubble is pushed in closer to the sun by the local interstellar magnetic field.

“Voyager 2 continues its journey of discovery, crossing the termination shock multiple times as it entered the outermost layer of the giant heliospheric bubble surrounding the Sun and joined Voyager 1 in the last leg of the race to interstellar space.” said Voyager Project Scientist Dr. Edward Stone of the California Institute of Technology, Pasadena, Calif.

The solar wind is a thin gas of electrically charged particles (plasma) blown into space by the sun. The solar wind blows in all directions, carving a bubble into interstellar space that extends past the orbit of Pluto. This bubble is called the heliosphere, and Voyager 1 was the first spacecraft to explore its outer layer, when it crossed into the heliosheath in December 2004. As Voyager 1 made this historic passage, it encountered the shock wave that surrounds our solar system called the solar wind termination shock, where the solar wind is abruptly slowed by pressure from the gas and magnetic field in interstellar space.

Even though Voyager 2 is the second spacecraft to cross the shock, it is scientifically exciting for a couple of reasons. The Voyager 2 spacecraft has a working Plasma Science instrument that can directly measure the velocity, density and temperature of the solar wind. This instrument is no longer working on Voyager 1 and estimates of the solar wind speed had to be made indirectly. Secondly, Voyager 1 may have had only a single shock crossing and it happened during a data gap. But Voyager 2 had at least five shock crossings over a couple of days (the shock “sloshes” back and forth like surf on a beach, allowing multiple crossings) and three of them are clearly in the data. They show us an unusual shock.

In a normal shock wave, fast-moving material slows down and forms a denser, hotter region as it encounters an obstacle. However, Voyager 2 found a much lower temperature beyond the shock than was predicted. This probably indicates that the energy is being transferred to cosmic ray particles that were accelerated to high speeds at the shock.

"The important new data describing the termination shock are still being pondered, but it is clear that Voyager has once again surprised us," said Dr. Eric Christian, Voyager Program Scientist at NASA Headquarters, Washington.

The two Voyager spacecraft will be the only source of local observations of this distant but highly interesting region for years to come. But in the summer of 2008, NASA will be launching a mission specifically designed to globally image the termination shock and heliosheath remotely from Earth orbit. The Interstellar Boundary Explorer (IBEX), led by Dr. David McComas of the Southwest Research Institute in San Antonio, Texas, will use energetic neutral atoms (ENAs) to create all-sky maps at various energies of the interaction of the heliosphere with interstellar space. ENAs are formed when energetic electrically-charged particles “steal” an electron from another particle. Once neutral, they travel straight, unaffected by the solar magnetic field. IBEX will detect some of the particles that happen to be headed towards the Earth, and the number and energy of the particles coming from all different directions will tell us much more about the overall structure of the interaction between the heliosphere and interstellar space.

Results on the Voyager 2 shock crossing from the entire Voyager science team are being presented at the Fall 2007 meeting of the American Geophysical Union in San Francisco. The Voyagers were built by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., which continues to operate both spacecraft.

Bill Steigerwald | EurekAlert!
Further information:
http://ww.nasa.gov

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>