Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express - 5000 orbits and counting

23.11.2007
On 25 December 2003, Europe’s first Mars orbiter arrived at the Red Planet. Almost four years later, Mars Express continues to rewrite the text books as its instruments send back a stream of images and other data. Today, the spacecraft reached another milestone in its remarkable career by completing 5000 orbits of Mars.

During its mission to investigate martian mysteries, the orbiter has revolutionised our knowledge of Mars, probing every facet of the Red Planet in unprecedented detail. Some of the most visually astonishing results have been returned by the High-Resolution Stereo Camera (HRSC), which has produced breathtaking, 3D colour images of the diverse martian surface – with giant volcanoes to sinuous valleys and ice-modified craters.


An artist's impression of Mars Express. The spacecraft left Earth for Mars on 2 June 2003. It reached its destination after a 6-month journey, and has been thoroughly investigating the planet since early 2004. Credits: ESA - D. Ducros

One of the most surprising discoveries has been the youthful appearance of the country-sized volcanoes of the Tharsis ridge, suggesting they may have been active only a few million years ago. The images also show that glacial landforms are widespread over much of the planet, with glacial activity continuing in some areas until perhaps 20 000 – 30 000 years ago. Among the peculiar landforms imaged by HRSC is what appears to be a recently frozen body of water in Elysium, close to the equator.

While the camera has been imaging the surface in exquisite detail, other instruments have been examining different aspects of the planet’s environment. One of the most significant results from the Visible and Infrared Mineralogical Mapping Spectrometer OMEGA has been the discovery of clays, hydrated minerals that formed early in the planet’s history, when liquid water was fairly abundant. However, the presence of sulphates and iron oxides suggests that the planet subsequently became colder and drier, with only episodic eruptions of water onto the surface.

At the poles, OMEGA has measured the surface composition and produced unprecedented maps of water ice and carbon dioxide ice. Further insights into the martian poles have come from the Mars Advanced Radar for Subsurface and Ionospheric Sounding, MARSIS, which is revealing, for the first time, the secrets of the planet’s subsurface.

It has so far identified the presence of water ice deposits several kilometres underground and revealed fine, layered material near the poles. Similar soundings of the north polar cap have confirmed that it is dominated by water ice, with variable amounts of dust. The larger southern cap seems less dusty, but, with a maximum thickness of 3.7 km, it contains enough ice to produce a global ocean 11 m deep.

The multi-frequency radar has also been probing the upper atmospheric layer (the ionosphere) and found that the distribution of charged particles is linked with patchy magnetic fields in the martian crust.

Although Mars’ atmosphere is very thin, it plays an important role in the planet’s evolution, and new breakthroughs have been made possible by Mars Express. The Planetary Fourier Spectrometer (PFS) has made the most complete map to date of its chemical composition. Evidence for the presence of methane could indicate that volcanic activity, or even simple lifeforms may still be present today.

Meanwhile, the Ultraviolet and Infrared Atmospheric Spectrometer, SPICAM has provided the first complete vertical profile of the atmosphere’s carbon dioxide density and temperature. It has revealed a nightglow and aurorae at mid-latitudes, produced the first ozone map and discovered the highest clouds ever observed on Mars.

The Energetic Atoms Analyser (ASPERA) has confirmed that the solar wind is slowly stripping atoms from the atmosphere down to an altitude of 270 km, although the rate of loss is surprisingly slow.

The MaRS radio science experiment has studied surface roughness by pointing the craft’s high-gain antenna at the planet and recording the echoes. It has also been used to measure small changes in the spacecraft’s orbit caused by gravity anomalies. Some of the most marked increases in surface gravity have been found over the volcanic Tharsis ridge, indicating a higher-than-average crustal density. Another discovery has been the existence of an ionospheric layer created by meteors burning up in the atmosphere.

With the mission already extended until at least 2009 and the possibility of further extensions into the next decade, ESA is keen to ensure that Mars Express will continue to provide the best possible scientific return. In an effort to meet the needs of the various science teams with instruments on Mars Express, controllers at ESA’s Space Operations Centre in Darmstadt, Germany, are currently fine-tuning the spacecraft’s orbit.

“Between 18 November and 16 December, the thrusters will be fired five times to make minor alterations to the orbit,” said Tanja Zegers, Mars Express Science Operations Co-ordinator.

“This will ensure that HRSC and OMEGA will continue to have suitable lighting conditions for their observations in the future, while meeting the needs of the MARSIS scientists, who need observing time at night to look beneath the surface. It will also enable the imaging instruments to continue their programme of detailed observations, so that they can eventually complete the global mapping of the planet.”

Agustin Chicarro | alfa
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEM3OQ63R8F_0.html

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>