Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smile, protons, you're on camera

Radioactivity, discovered more than 100 years ago and studied by physicists ever since, would seem to be a relatively closed subject in science. However, since the 1960s, the pursuit of at least one open question about how nuclei spontaneously eject various particles has continued to nag experimentalists, largely because of an inability to make precise measurements of fleeting, exotic nuclei.

In a paper published this week in Physical Review Letters, an international collaboration of researchers, led by Marek Pfutzner, a physicist from Warsaw University in Poland, takes several steps toward an answer. The scientists describe a first-ever success in peering closely at radioactive decay of a rare iron isotope at the ragged edge of the known nuclear map. The tools used to achieve this result include a novel combination of advanced physics equipment and imaging technology that is found in most off-the-shelf digital cameras.

"We have proved in a direct and clear way that this extremely neutron-deficient nucleus disintegrates by the simultaneous emission of two protons," write the authors.

Pfutzner and his collaborators set out to better understand an exotic form of radioactivity -- two-proton emissions from iron-45, a nucleus with 26 protons and 19 neutrons. The stable form of iron that is most abundant on Earth has 26 protons and 30 neutrons. One possibility was that the iron-45 isotope might occasionally release an energetically linked two-proton pair, known as a diproton. Other possibilities were that the protons, whether emitted in quick succession or simultaneously, were unlinked.

The research was performed at Michigan State University's National Superconducting Cyclotron Laboratory (NSCL), but the key device was a detector built by Pfutzner and his Warsaw University colleagues. Though nicknamed "the cannon" because of its vague resemblance to some sort of space age military device, the detector didn't shoot anything but rather was the target for the beam of rare isotopes produced at the NSCL Coupled Cyclotron Facility.

The detector included a front-end gas chamber that accepted and then slowed rare isotopes traveling at half the speed of light. The back-end imaging system, built around a high-end digital camera with standard charge-coupled device, or CCD, technology, recorded ghostly images of trajectories of emitted protons from the decaying iron-45 nuclei shot into the cannon's mouth.

Analysis of these images ruled out the theorized diproton emission and indicated that the observed correlations between emitted protons were best described by a form of nuclear transformation known as three-body decay. A theory of this process had previously been described by Leonid Grigorenko, a physicist at the Joint Institute for Nuclear Research in Dubna, Russia and a coauthor of the paper.

"There is amazing agreement between the experiment and Grigorenko's theory, which takes into account the complex interplay between emitted pairs of protons and the daughter nucleus," said Robert Grzywacz, a physicist at the University of Tennessee and Oak Ridge National Laboratory and a coauthor of the paper.

Besides shedding light on a novel form of radioactive decay, the technique also could lead to additional discoveries about fleeting, rare isotopes studied at accelerator facilities such as NSCL and Oak Ridge National Laboratory. These isotopes may hold the key to understanding processes inside neutron stars and determining the limits of nuclear existence.

The experiment itself also harkens back to the early days of experimental nuclear physics in which visual information served as the raw data. Before the days of cameras, this information was usually captured by scientists hunched over a microscope counting, for example, tiny flashes as alpha particles struck a zinc sulfide screen under the lens.

"It's perhaps the first time in modern nuclear physics that fundamentally new information about radioactive decay was captured in a picture taken by a digital camera," said Andreas Stolz, NSCL assistant professor and a coauthor on the paper. "Usually, in nuclear physics experiments you have digitized data and several channels of information from electronics equipment, but never images."

Geoff Koch | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>