Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU physicist defends Einstein's theory and 'speed of gravity' measurement

05.10.2007
Scientists have attempted to disprove Albert Einstein's theory of general relativity for the better part of a century. After testing and confirming Einstein's prediction in 2002 that gravity moves at the speed of light, a professor at the University of Missouri-Columbia has spent the past five years defending the result, as well as his own innovative experimental techniques for measuring the speed of propagation of the tiny ripples of space-time known as gravitational waves.

Sergei Kopeikin, associate professor of physics and astronomy in the College of Arts and Science, believes that his latest article, "Gravimagnetism, causality, and aberration of gravity in the gravitational light-ray deflection experiments" published along with Edward Fomalont from the National Radio Astronomical Observatory, arrives at a consensus in the continuing debate that has divided the scientific community.

An experiment conducted by Fomalont and Kopeikin five years ago found that the gravity force of Jupiter and light travel at the same speed, which validates Einstein's suggestion that gravity and electromagnetic field properties, are governed by the same principle of special relativity with a single fundamental speed. In observing the gravitational deflection of light caused by motion of Jupiter in space, Kopeikin concluded that mass currents cause non-stationary gravimagnetic fields to form in accordance with Einstein's point of view. The research paper that discusses the gravimagnetic field appears in the October edition of Journal of General Relativity and Gravitation.

Einstein believed that in order to measure any property of gravity, one has to use test particles. “By observing the motion of the particles under influence of the gravity force, one can then extract properties of the gravitational field,” Kopeikin said. “Particles without mass – such as photons – are particularly useful because they always propagate with constant speed of light irrespectively of the reference frame used for observations.”

The property of gravity tested in the experiment with Jupiter also is called causality. Causality denotes the relationship between one event (cause) and another event (effect), which is the consequence (result) of the first. In the case of the speed of gravity experiment, the cause is the event of the gravitational perturbation of photon by Jupiter, and the effect is the event of detection of this gravitational perturbation by an observer. The two events are separated by a certain interval of time which can be measured as Jupiter moves, and compared with an independently-measured interval of time taken by photon to propagate from Jupiter to the observer. The experiment found that two intervals of time for gravity and light coincide up to 20 percent. Therefore, the gravitational field cannot act faster than light propagates.”

Other physicists argue that the Fomalont-Kopeikin experiment measured nothing else but the speed of light. “This point of view stems from the belief that the time-dependent perturbation of the gravitational field of a uniformly moving Jupiter is too small to detect,” Kopeikin said. “However, our research article clearly demonstrates that this belief is based on insufficient mathematical exploration of the rich nature of the Einstein field equations and a misunderstanding of the physical laws of interaction of light and gravity in curved space-time.”

Kevin Carlson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>