Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New images reveal threatening conditions that two rovers face in giant Martian dust storm

31.08.2007
The mighty Mars rovers Spirit and Opportunity continue to persevere in brutal conditions, as revealed in images of the sun they are sending home. The images show how opaque the Martian atmosphere has been in the face of a raging, two-month dust storm.

To understand the gravity of the storm, engineers and astronomers monitor the situation by examining the images of the sun and measuring the amount of dust or the opacity of the atmosphere.

Emily Lakdawalla of the Planetary Society assembled the mosaic of images, which were taken daily by the panoramic cameras (Pancams) on both rovers, Spirit and Opportunity. The images were calibrated by students in Cornell's MarsLab image-processing facility and made available through collaboration with Jim Bell, Cornell professor of astronomy and the principal investigator on the rovers' Pancam imaging team.

"Emily's mosaics are quite remarkable. They show a rover's-eye view of the storm getting worse, and this little light bulb we call the sun getting dimmer and dimmer and dimmer as the dust clouds built up," said Bell.

Since June, a massive dust storm has engulfed much of the Martian surface. The storm has put the rovers in danger, as they depend upon solar power to run during the day and to survive the harsh, cold Martian nights. As dust clouds block the sunlight and dust settles on the solar panels, the rovers' energy is depleted. Only wind can remove the dust, Bell said.

For the rover Spirit, the Jet Propulsion Laboratory (JPL) in Pasadena, Calif., reports that even though the Martian sky above Gusev Crater is clearing, solar power levels remained fairly low and constant dust now appears to be accumulating on the solar panels. Between sol -- a Martian day -- 1283 (Aug. 12) and sol 1286 (Aug. 16), the atmosphere cleared by about 35 percent, leading to daily energy levels of about 300 watt-hours (the amount of energy needed to light a 100-watt bulb for three hours). Typical levels before the dust storms were around 700 to 900 watt-hours for the rovers.

On the other side of Mars, Opportunity, now waiting to enter Victoria Crater from the rim, is currently experiencing its lowest power levels to date. The sky was so dark in mid-July that less than 200 watt-hours of daily energy was available, according to JPL. But skies are slowly clearing, offering hope that the rover will be ready for a descent into the crater soon. Opportunity benefited from wind blowing some dust off solar panels on Aug. 22. Under gradually clearing skies, Opportunity's solar panels were producing about 300 watt hours daily by Aug. 24.

The Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Exploration Rover Project for the NASA Science Mission Directorate, Washington, D.C.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>