Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supersonic 'Rain' Falls on Newborn Star

30.08.2007
Forming Solar System Deluged with Oceans of Water

Astronomers at the University of Rochester have discovered five Earth-oceans' worth of water that has recently fallen into the planet-forming region around an extremely young, developing star.

Dan Watson, professor of physics and astronomy at the University of Rochester, believes he and his colleagues are the first to see a short-lived stage of protoplanetary disk formation, and the manner in which a planetary system's supply of water arrives from the natal envelope within which its parent star originally formed.

The findings, published in today's Nature, are the first-ever glimpse of material directly feeding a protoplanetary disk.

The embryonic star in question, called IRAS 4B, lies in a picturesque nebula called NGC 1333, about 1000 light years from Earth. It is one of an initial list of 30 of the youngest "protostars" known, which Watson and his team examined with the Spitzer Space Telescope's infrared spectrograph for signs of very dense, warm material at their cores. It is also the only one of the thirty to show signs of such material, signaled by the infrared spectrum of water vapor. The watery characteristics of IRAS4B's infrared spectrum can best be explained by material falling from the protostar's envelope onto a surrounding, dense disk. This setup, called by astronomers a "disk-accretion shock," is the formative mechanism of the disks within which all planetary systems are thought to originate.

"Icy material from the envelope is in free-fall, reaching supersonic speeds and crashing into the protoplanetary disk." says Watson. "The ice vaporizes on impact, and the warm water vapor emits a distinctive spectrum of infrared light. That light is what we measured. From the details of the measured spectrum we can tease out the physical details of this brand-new, pre-planetary disk"

Among the details derived so far are the rate of "rainfall" onto the disk – about 23 Earth masses per year – and the characteristics of the "puddle" on the disk's surface: The surface is 170 degrees Kelvin (153 degrees below zero Fahrenheit), and at that temperature there is about an Earth's mass worth of material, including enough water to fill Earth's oceans about five times. The area of the "puddle" is such that, if circular and centered on the Sun, its perimeter would be just beyond the orbit of Pluto. Results such as this will help astronomers assess the early planet-forming potential of IRAS4B's disk, and by inference learn about the earliest stages of our solar system's life.

There are astro-chemical implications of the observations as well. "There are lots of primitive icy bodies in our solar system, and the ice they carry is often thought to descend directly from the interstellar medium, so that by studying one we could learn about the other," says Watson. "But in NGC 1333 IRAS 4B's disk, it is clear that the water is received as vapor and will be re-frozen under different conditions, and this means that the oxygen and hydrogen chemistry of its disk is reset from interstellar conditions. It's not getting pristine, interstellar ice."

Astronomers at the University of Rochester, including Watson and co-author professor William Forrest, helped design the "eyes" of Spitzer specifically to look for objects like IRAS4B and its water because such objects sit in an astronomer's blind spot. Called "Class Zero Protostars" for their extreme youth, these objects radiate substantial light only at long infrared wavelengths, which our atmosphere inconveniently blocks from ground-based telescopes.

When Watson and his team first planned their Spitzer observations, only 50 class-zero protostars were known, and the team selected the 30 brightest. But Watson says that's just the beginning. Astronomers now know of hundreds of such objects, and Watson expects to have thousands to investigate in the coming years.

Another characteristic makes the otherwise un-noteworthy IRAS4B a rarity. It is oriented with its axis pointed almost directly at Earth, splaying out its entire disk to our view and simplifying the process of plumbing its secrets. Only a small fraction of the future candidates are expected be similarly oriented, keeping the search for lots more "raining protostars" a challenge.

This work was supported in part by NASA through the Spitzer-IRS Instrument Team, Origins and Astrobiology programs, and by the National Science and Technology Council of Mexico.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>