Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supersonic 'Rain' Falls on Newborn Star

30.08.2007
Forming Solar System Deluged with Oceans of Water

Astronomers at the University of Rochester have discovered five Earth-oceans' worth of water that has recently fallen into the planet-forming region around an extremely young, developing star.

Dan Watson, professor of physics and astronomy at the University of Rochester, believes he and his colleagues are the first to see a short-lived stage of protoplanetary disk formation, and the manner in which a planetary system's supply of water arrives from the natal envelope within which its parent star originally formed.

The findings, published in today's Nature, are the first-ever glimpse of material directly feeding a protoplanetary disk.

The embryonic star in question, called IRAS 4B, lies in a picturesque nebula called NGC 1333, about 1000 light years from Earth. It is one of an initial list of 30 of the youngest "protostars" known, which Watson and his team examined with the Spitzer Space Telescope's infrared spectrograph for signs of very dense, warm material at their cores. It is also the only one of the thirty to show signs of such material, signaled by the infrared spectrum of water vapor. The watery characteristics of IRAS4B's infrared spectrum can best be explained by material falling from the protostar's envelope onto a surrounding, dense disk. This setup, called by astronomers a "disk-accretion shock," is the formative mechanism of the disks within which all planetary systems are thought to originate.

"Icy material from the envelope is in free-fall, reaching supersonic speeds and crashing into the protoplanetary disk." says Watson. "The ice vaporizes on impact, and the warm water vapor emits a distinctive spectrum of infrared light. That light is what we measured. From the details of the measured spectrum we can tease out the physical details of this brand-new, pre-planetary disk"

Among the details derived so far are the rate of "rainfall" onto the disk – about 23 Earth masses per year – and the characteristics of the "puddle" on the disk's surface: The surface is 170 degrees Kelvin (153 degrees below zero Fahrenheit), and at that temperature there is about an Earth's mass worth of material, including enough water to fill Earth's oceans about five times. The area of the "puddle" is such that, if circular and centered on the Sun, its perimeter would be just beyond the orbit of Pluto. Results such as this will help astronomers assess the early planet-forming potential of IRAS4B's disk, and by inference learn about the earliest stages of our solar system's life.

There are astro-chemical implications of the observations as well. "There are lots of primitive icy bodies in our solar system, and the ice they carry is often thought to descend directly from the interstellar medium, so that by studying one we could learn about the other," says Watson. "But in NGC 1333 IRAS 4B's disk, it is clear that the water is received as vapor and will be re-frozen under different conditions, and this means that the oxygen and hydrogen chemistry of its disk is reset from interstellar conditions. It's not getting pristine, interstellar ice."

Astronomers at the University of Rochester, including Watson and co-author professor William Forrest, helped design the "eyes" of Spitzer specifically to look for objects like IRAS4B and its water because such objects sit in an astronomer's blind spot. Called "Class Zero Protostars" for their extreme youth, these objects radiate substantial light only at long infrared wavelengths, which our atmosphere inconveniently blocks from ground-based telescopes.

When Watson and his team first planned their Spitzer observations, only 50 class-zero protostars were known, and the team selected the 30 brightest. But Watson says that's just the beginning. Astronomers now know of hundreds of such objects, and Watson expects to have thousands to investigate in the coming years.

Another characteristic makes the otherwise un-noteworthy IRAS4B a rarity. It is oriented with its axis pointed almost directly at Earth, splaying out its entire disk to our view and simplifying the process of plumbing its secrets. Only a small fraction of the future candidates are expected be similarly oriented, keeping the search for lots more "raining protostars" a challenge.

This work was supported in part by NASA through the Spitzer-IRS Instrument Team, Origins and Astrobiology programs, and by the National Science and Technology Council of Mexico.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>