Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hinode helps unravel long-standing solar mysteries

A year after launch, scientists working with Hinode, a Japanese mission with ESA participation, are meeting at Trinity College, Dublin, to discuss latest findings on solar mysteries - including new insights on solar flares and coronal heating.

Highlights include new insights on the workings of solar flares and on the mechanism behind coronal heating.

Hinode (Sunrise in Japanese) was launched to study magnetic fields on the Sun and their role in powering the solar atmosphere and driving solar eruptions. With its Extreme Ultraviolet Imaging Spectrometer (EIS), effectively a solar speed camera, it is now possible to pinpoint the source of eruptions during solar flares and to find new clues about the heating processes of the corona.

The speed camera is a spectrometer, an instrument that splits the light coming from solar plasma, a tenuous and highly variable gas, into its distinct colours (or spectral lines), providing detailed information about the plasma. The velocity of the gases in a solar feature is measured by the Doppler effect - the same effect that is used by police radars to detect speeding motorists.

“Hinode is an impressive example of international cooperation and is now helping us solve the mysteries of the Sun with spectacular new data,” says Bernhard Fleck, ESA’s Hinode and SOHO project scientist.

The solar corona

Keith Mason, of the Science and Technology Facilities Council (STFC) said, “Our Sun is a dynamic and violent entity and European astronomers have played a crucial role in understanding it; right from the first observation of a solar flare to present-day work to predict and protect against the Sun’s outbursts.”

Solar flares, massive energetic explosions that rise up from the Sun, can damage manmade satellites and pose a radiation hazard to astronauts. Despite decades of study, many aspects of this phenomenon are not well-understood. Hinode’s observations are now shedding light on possible mechanisms that accelerate solar particles in flares.

Plasma on 'dark spots'

Louise Harra at the Mullard Space Science Laboratory, University College London, leading the EIS team says, “We knew that solar flares can impact a vast area on the Sun, sometimes leaving behind mysterious ‘dark patches’. Using Hinode, for the first time we have been able to train a speed camera on the material in these dark areas – which can be twenty times the diameter of the Earth."

"We have witnessed material flowing from the dark patch in the wake of the flare, feeding the particle flow that can be hazardous for anything in its path as it hurtles through space at 2000 times the speed of a fighter plane.”

Hinode (Solar-B)

These dark areas fade away after the flare, over several days. “In the long term, understanding solar storms in this new level of detail will allow us to make better predictions of ‘space weather’ storms. This is critical for satellite telecommunications, which we now take for granted”, she adds.

Ichiro Nakatani, JAXA Project Manager for Hinode commented, “We are delighted that nearly a year after launch, we are discovering new things about our nearest star, with many more discoveries to come. The years of hard work that went into developing the satellite were definitely worth it.”

Karina De Castris | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>