Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hinode helps unravel long-standing solar mysteries

23.08.2007
A year after launch, scientists working with Hinode, a Japanese mission with ESA participation, are meeting at Trinity College, Dublin, to discuss latest findings on solar mysteries - including new insights on solar flares and coronal heating.

Highlights include new insights on the workings of solar flares and on the mechanism behind coronal heating.

Hinode (Sunrise in Japanese) was launched to study magnetic fields on the Sun and their role in powering the solar atmosphere and driving solar eruptions. With its Extreme Ultraviolet Imaging Spectrometer (EIS), effectively a solar speed camera, it is now possible to pinpoint the source of eruptions during solar flares and to find new clues about the heating processes of the corona.

The speed camera is a spectrometer, an instrument that splits the light coming from solar plasma, a tenuous and highly variable gas, into its distinct colours (or spectral lines), providing detailed information about the plasma. The velocity of the gases in a solar feature is measured by the Doppler effect - the same effect that is used by police radars to detect speeding motorists.

“Hinode is an impressive example of international cooperation and is now helping us solve the mysteries of the Sun with spectacular new data,” says Bernhard Fleck, ESA’s Hinode and SOHO project scientist.

The solar corona

Keith Mason, of the Science and Technology Facilities Council (STFC) said, “Our Sun is a dynamic and violent entity and European astronomers have played a crucial role in understanding it; right from the first observation of a solar flare to present-day work to predict and protect against the Sun’s outbursts.”

Solar flares, massive energetic explosions that rise up from the Sun, can damage manmade satellites and pose a radiation hazard to astronauts. Despite decades of study, many aspects of this phenomenon are not well-understood. Hinode’s observations are now shedding light on possible mechanisms that accelerate solar particles in flares.

Plasma on 'dark spots'

Louise Harra at the Mullard Space Science Laboratory, University College London, leading the EIS team says, “We knew that solar flares can impact a vast area on the Sun, sometimes leaving behind mysterious ‘dark patches’. Using Hinode, for the first time we have been able to train a speed camera on the material in these dark areas – which can be twenty times the diameter of the Earth."

"We have witnessed material flowing from the dark patch in the wake of the flare, feeding the particle flow that can be hazardous for anything in its path as it hurtles through space at 2000 times the speed of a fighter plane.”

Hinode (Solar-B)

These dark areas fade away after the flare, over several days. “In the long term, understanding solar storms in this new level of detail will allow us to make better predictions of ‘space weather’ storms. This is critical for satellite telecommunications, which we now take for granted”, she adds.

Ichiro Nakatani, JAXA Project Manager for Hinode commented, “We are delighted that nearly a year after launch, we are discovering new things about our nearest star, with many more discoveries to come. The years of hard work that went into developing the satellite were definitely worth it.”

Karina De Castris | alfa
Further information:
http://www.esa.int/esaSC/SEMKOOWZK5F_index_0.html

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>