Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar mission 'Made in Germany' to give unique view of the Moon

22.08.2007
The latest plans for the Lunar Exploration Orbiter (LEO), a German lunar mission due for launch in 2012, will be presented on Wednesday 22nd August at the European Planetary Science Congress, Potsdam.

Professor Ralf Jaumann, from the German aerospace centre DLR, said, "The Lunar Exploration Orbiter will be a unique mission. It will consist of two spacecraft flying in formation and taking simultaneous measurements, which will give us the first three-dimensional view of the Moon's magnetic and gravitation field.

It will also give us the first opportunity to study these fields on the far site of the Moon. In addition, LEO will give us a very detailed picture of the lunar surface and also insight into the structure of the lunar regolith, layers of crushed rocks that extend about 100 metres beneath the lunar surface, and the boundary with the bed-rock beneath."

The main satellite, which will weigh about 700 kilograms, is paired with a small sub-satellite, which weighs about 150 kilograms and will carry duplicates of the experiments to measure the lunar gravitational and magnetic fields. At present, feasibility studies for construction of the satellite and sub-satellite are being carried out by the German industry. Following the presentation of their results in October, a final, costed mission proposal will be presented to the German government.

The main satellite will carry a microwave radar that will give provide a new 'view' beneath the lunar surface up to a depth of a few hundred metres. At maximum depths the radar will be able to resolve structures two metres across and within the top two metres it will show the formation of the regolith on a millimetre scale. Professor Jaumann said, "The the layering in the lunar regolith is caused by impacts, which scatter material across the Moon's surface. Our radar experiment will reveal the distribution of rocks and particles in minute detail near the surface and will allow us to reveal the history of impacts on the Moon as we probe to increasing depths."

LEO will also carry remote sensing instruments that will create data for high resolution maps of the entire lunar surface in stereo and multispectral bands. The mission is planned to last four years, which means that there will be opportunities to create multiple stereo views of the Moon. This long duration also means that LEO can also study identify new impacts on the surface, both by looking for new fresh craters and detecting impact events and dust directly with the flash detection camera, SPOSH. Professor Jaumann said, "Altogether, the Lunar Exploration Orbiter concept is technologically challenging but feasible."

With LEO, the team hopes to further establish Germany as a key player among space-faring nations and demonstrate expertise and technological know-how "Made in Germany".

"With its high profile, LEO should encourage the growing acceptance of space exploration in Germany and will capture the imagination of the general public," said Professor Jaumann.

During the European Planetary Science Congress the scientific concept of LEO and some fundamental questions regarding the Moon will also be outlined in a public lecture in Potsdam, entitled "To the Moon and beyond: German and European perspectives in space research". The lecture will take place on Tuesday 21st August at 19:30 and will be given by Professor Tilman Spohn, a geophysicist and director of DLR's Institute of Planetary Research in Berlin.

"The LEO mission fits well in the global initiatives for lunar exploration. Our closest celestial neighbour, the Moon has been scientifically neglected since the Apollo times. But there's so much to learn about the first eons of the solar system and the evolution of the Earth itself," said Professor Spohn.

Anita Heward | alfa
Further information:
http://www.dlr.de/en/
http://www.dlr.de

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>