Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar mission 'Made in Germany' to give unique view of the Moon

22.08.2007
The latest plans for the Lunar Exploration Orbiter (LEO), a German lunar mission due for launch in 2012, will be presented on Wednesday 22nd August at the European Planetary Science Congress, Potsdam.

Professor Ralf Jaumann, from the German aerospace centre DLR, said, "The Lunar Exploration Orbiter will be a unique mission. It will consist of two spacecraft flying in formation and taking simultaneous measurements, which will give us the first three-dimensional view of the Moon's magnetic and gravitation field.

It will also give us the first opportunity to study these fields on the far site of the Moon. In addition, LEO will give us a very detailed picture of the lunar surface and also insight into the structure of the lunar regolith, layers of crushed rocks that extend about 100 metres beneath the lunar surface, and the boundary with the bed-rock beneath."

The main satellite, which will weigh about 700 kilograms, is paired with a small sub-satellite, which weighs about 150 kilograms and will carry duplicates of the experiments to measure the lunar gravitational and magnetic fields. At present, feasibility studies for construction of the satellite and sub-satellite are being carried out by the German industry. Following the presentation of their results in October, a final, costed mission proposal will be presented to the German government.

The main satellite will carry a microwave radar that will give provide a new 'view' beneath the lunar surface up to a depth of a few hundred metres. At maximum depths the radar will be able to resolve structures two metres across and within the top two metres it will show the formation of the regolith on a millimetre scale. Professor Jaumann said, "The the layering in the lunar regolith is caused by impacts, which scatter material across the Moon's surface. Our radar experiment will reveal the distribution of rocks and particles in minute detail near the surface and will allow us to reveal the history of impacts on the Moon as we probe to increasing depths."

LEO will also carry remote sensing instruments that will create data for high resolution maps of the entire lunar surface in stereo and multispectral bands. The mission is planned to last four years, which means that there will be opportunities to create multiple stereo views of the Moon. This long duration also means that LEO can also study identify new impacts on the surface, both by looking for new fresh craters and detecting impact events and dust directly with the flash detection camera, SPOSH. Professor Jaumann said, "Altogether, the Lunar Exploration Orbiter concept is technologically challenging but feasible."

With LEO, the team hopes to further establish Germany as a key player among space-faring nations and demonstrate expertise and technological know-how "Made in Germany".

"With its high profile, LEO should encourage the growing acceptance of space exploration in Germany and will capture the imagination of the general public," said Professor Jaumann.

During the European Planetary Science Congress the scientific concept of LEO and some fundamental questions regarding the Moon will also be outlined in a public lecture in Potsdam, entitled "To the Moon and beyond: German and European perspectives in space research". The lecture will take place on Tuesday 21st August at 19:30 and will be given by Professor Tilman Spohn, a geophysicist and director of DLR's Institute of Planetary Research in Berlin.

"The LEO mission fits well in the global initiatives for lunar exploration. Our closest celestial neighbour, the Moon has been scientifically neglected since the Apollo times. But there's so much to learn about the first eons of the solar system and the evolution of the Earth itself," said Professor Spohn.

Anita Heward | alfa
Further information:
http://www.dlr.de/en/
http://www.dlr.de

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>