Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lumpy, bumpy, fluffy and layered: a picture of Rosetta's target comet builds up

21.08.2007
Observational and theoretical studies of Comet 67P/Churyumov-Gerasimenko, the target of ESA’s Rosetta mission, are building a detailed portrait of the comet’s nucleus as it travels around the Sun.
Observations of the comet using the 8.2 m-ESO Very Large Telescope (VLT) show an irregularly-shaped object that is about 4.6 kilometres in diameter with a rotational period of 12 hours 49 minutes. Ms Cecilia Tubiana, who will be presenting results at the second European Planetary Science Congress

(EPSC) in Potsdam on Tuesday 21st August, said, “These observations were taken when the comet was approaching the furthest point from the Sun in its orbit. Rosetta will rendezvous with the comet in 2014 at a distance of about 600 million kilometres from the Sun. While a quite detailed portrait of the comet at small heliocentric distance has been drawn, a profound description of Rosetta’s target comet at large heliocentric distance is missing.”

A team of scientists, led by the Max Planck Institute for Solar System Research, observed the comet’s nucleus in June 2004, May and August 2006 and July 2007, when the comet was at least 680 million kilometres from the Sun.
Surprisingly, although the comet was not active, they found that a faint dust trail is visible in the images of the comet, extending more than 500 000 km along the comet’s orbital path. Ms Tubiana said, “We believe that this dust trail is composed of large grains that the comet shed over the

many times it has travelled along this path.

Later on Tuesday 21st at the EPSC, Dr Jérémie Lasue, of the Service d’aéronomie in France, will present results of numerical studies that describe how a comet’s nucleus changes as it travels along its orbital path.
Dr Lasue explained, ”Comets constantly evolve by ejecting material as their distance from the Sun changes and their temperature increases or falls. To land on a comet’s nucleus, you need to have a good idea of its structure, density and tensile strength. Comet 67P/Churyumov-Gerasimenko most probably has an irregular comet nucleus with crater-like depressions on its surface.

Our team has developed a three-dimensional model of the internal processes in the nucleus, allowing us to predict the thermal evolution and surface activity as the comet moves along its orbit”

Recent mission results suggest that a comet’s structure is highly stratified. Dr Lasue said, “Stardust showed that the dust ejected from the outer layers is composed of fluffy particles that can be relatively large.

These particles are rich in silicates and organics, which are the building blocks of life. Our simulations, for the first time, take into account the relationship between the impact history of the comet and the forces holding the comet’s constituents together. This technique has enabled us to reproduce and interpret the amazing layered structure and surface features that Deep Impact observed at comet 9P/Tempel 1. This is a new means to quantify the tensile strength of comet nuclei, which gives us vital information in preparing for Rosetta’s rendezvous with 67P/Churyumov-Gerasimenko.”

The teams of scientists from France and Italy in which Dr Lasue works, are developing these numerical tools to support two of Rosetta’s instruments:

VIRTIS, which will determine the composition of the ices in the comet’s nucleus as well as emitted gases and dust, and CONSERT, which will investigate the deep interior of the nucleus with radio waves.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/index.php?option=com_content&task=view&id=101&I

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>