Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lumpy, bumpy, fluffy and layered: a picture of Rosetta's target comet builds up

21.08.2007
Observational and theoretical studies of Comet 67P/Churyumov-Gerasimenko, the target of ESA’s Rosetta mission, are building a detailed portrait of the comet’s nucleus as it travels around the Sun.
Observations of the comet using the 8.2 m-ESO Very Large Telescope (VLT) show an irregularly-shaped object that is about 4.6 kilometres in diameter with a rotational period of 12 hours 49 minutes. Ms Cecilia Tubiana, who will be presenting results at the second European Planetary Science Congress

(EPSC) in Potsdam on Tuesday 21st August, said, “These observations were taken when the comet was approaching the furthest point from the Sun in its orbit. Rosetta will rendezvous with the comet in 2014 at a distance of about 600 million kilometres from the Sun. While a quite detailed portrait of the comet at small heliocentric distance has been drawn, a profound description of Rosetta’s target comet at large heliocentric distance is missing.”

A team of scientists, led by the Max Planck Institute for Solar System Research, observed the comet’s nucleus in June 2004, May and August 2006 and July 2007, when the comet was at least 680 million kilometres from the Sun.
Surprisingly, although the comet was not active, they found that a faint dust trail is visible in the images of the comet, extending more than 500 000 km along the comet’s orbital path. Ms Tubiana said, “We believe that this dust trail is composed of large grains that the comet shed over the

many times it has travelled along this path.

Later on Tuesday 21st at the EPSC, Dr Jérémie Lasue, of the Service d’aéronomie in France, will present results of numerical studies that describe how a comet’s nucleus changes as it travels along its orbital path.
Dr Lasue explained, ”Comets constantly evolve by ejecting material as their distance from the Sun changes and their temperature increases or falls. To land on a comet’s nucleus, you need to have a good idea of its structure, density and tensile strength. Comet 67P/Churyumov-Gerasimenko most probably has an irregular comet nucleus with crater-like depressions on its surface.

Our team has developed a three-dimensional model of the internal processes in the nucleus, allowing us to predict the thermal evolution and surface activity as the comet moves along its orbit”

Recent mission results suggest that a comet’s structure is highly stratified. Dr Lasue said, “Stardust showed that the dust ejected from the outer layers is composed of fluffy particles that can be relatively large.

These particles are rich in silicates and organics, which are the building blocks of life. Our simulations, for the first time, take into account the relationship between the impact history of the comet and the forces holding the comet’s constituents together. This technique has enabled us to reproduce and interpret the amazing layered structure and surface features that Deep Impact observed at comet 9P/Tempel 1. This is a new means to quantify the tensile strength of comet nuclei, which gives us vital information in preparing for Rosetta’s rendezvous with 67P/Churyumov-Gerasimenko.”

The teams of scientists from France and Italy in which Dr Lasue works, are developing these numerical tools to support two of Rosetta’s instruments:

VIRTIS, which will determine the composition of the ices in the comet’s nucleus as well as emitted gases and dust, and CONSERT, which will investigate the deep interior of the nucleus with radio waves.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/index.php?option=com_content&task=view&id=101&I

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>