Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will Titan lose its veil?

20.08.2007
The question of whether Titan can retain its thick, organic atmosphere for the rest of its lifetime could hinge on how efficiently methane molecules were packed inside water “crates” during a period of the moon’s formation.

Dr Vasili Dimitrov, whose work will be presented at the European Planetary Science Congress in Potsdam, said, “If Titan runs out of methane and loses its ‘veil’, it will become a completely different type of astrophysical body. Methane drives the chemical reactions in Titan’s atmosphere but, because it’s so highly reactive and therefore short-lived, it must be replenished. We need to find out just how much methane is stored in the primordial reserve in Titan’s interior at a level where it can escape to the surface. To do this, we need to know how efficiently the methane molecules were packed away when the reserve formed.“

The trapped methane can exist only in molecular structures called clathrates, which occur when “host” water molecules form a cage-like structure around a smaller “guest” molecule (in this case methane). The water crystallizes in a cubic system, rather than the hexagonal structure of normal ice, so that the cages are arranged in body-centred cubic packing. However, not all of the cages are occupied. The maximum efficiency in filling the cages is achieved only if conditions are optimal e.g. the structure forms slowly at temperatures close to absolute zero.

Dr Dimitrov said, “The conditions of Titan’s accretion and evolution are poorly understood, so we cannot yet say how many of the cages were filled and how much methane is contained in the reserve. In addition, we need to do some more experiments in the laboratory to find out more about the transfer of materials between layers.”

Beneath Titan’s surface, there is a permafrost crust that sits on a liquid or semi-liquid mixture of ammonia, methane and water. Beneath that, an icy layer surrounds a rocky core. It is unclear whether methane trapped in the icy layer next to the core has any means of escape. Dr Dimitrov said, “At the moment we can work out an upper and lower limit for the packing efficiency, but this doesn’t tell us which side of the critical value Titan’s methane stockpile falls. With more experiments, together with the data supplied by the Cassini-Huygens mission, we should be able to answer the question of whether this fascinating world will keep its veil of mystery.”

Being able to estimate the packing efficiency of methane in clathrates could also have important applications back on Earth. According to some estimates, the overall methane stock in the Earth’s natural clathrates may be four times higher than the oil stock. Thus, methane extracted from clathrates could one day become a major fuel source for the mankind.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/index.php?option=com_content&task=view&id=108&Itemid=32

More articles from Physics and Astronomy:

nachricht Individualized fiber components for the world market
23.06.2017 | Laser Zentrum Hannover e.V.

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>