Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern U researchers answer longstanding question in the field of condensed matter physics

08.08.2007
Paper 'Flow Diagram of the Metal-insulator Transition in Two'

Northeastern University Physics professor Sergey V. Kravchenko along with colleagues Svetlana Anissimova (Northeastern University), A Punnoose (City College if the City University of New York), AM Finkelstein (Weizmann Institute of Science, Israel) and TM Klapwijk (Delft University of Technology, Netherlands), has published an important new paper in the August issue of Nature Physics which answers a long standing question in the field of condensed matter physics.

The discovery of the metal-insulator transition (MIT) in two-dimensional electron systems by Kravchenko and colleagues in 1994 challenged the veracity of one of the most influential conjectures in the physics of disordered electrons by Abrahams, Anderson, Licciardello and Ramakrishnan (1979) which stated that “in two dimensions, there is no true metallic behavior.”

However, the 1979 theory did not account for interactions between electrons. In this new paper, Kravchenko and colleagues investigate the interplay between the electron-electron interactions and disorder near the MIT using simultaneous measurements of electrical resistivity and magnetoconductance.

The researchers show that both the resistance and interaction amplitude exhibit a fan-like spread as the MIT is crossed. From this data, the researchers have constructed a resistance-interaction flow diagram of the MIT that clearly reveals a quantum critical point, as predicted by the recent two-parameter scaling theory by two of the authors (A. Punnoose and A.M. Finkelstein). The metallic side of this diagram is accurately described by the renormalization-group theory without any fitting parameters. In particular, the metallic temperature dependence of the resistance sets in when the interaction amplitude reaches a value in remarkable agreement with the one predicted by theory.

“To the best of our knowledge, this is the first observation of the temperature dependence of the strength of the electron-electron interactions,” said Kravchenko. “We found that the interaction grows in the metallic phase as the temperature is reduced and is suppressed in the insulating phase.”

“Whether or not the electrons can conduct in two dimensions at very low temperatures is a question that has been hotly debated for more than a decade,” said Kravchenko. “We now know that, because of the interactions between them, they can, and we have a theory that quantitatively and qualitatively explains things.”

An advance copy of the paper is available online at: http://www.nature.com/nphys/index.html

About Nature Physics:

Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features. The impact factor for Nature Physics is 12.040, according to the ISI Journal Citation Reports. This places Nature Physics first among all primary research journals in physics.

The journal features two primary research paper formats: Letters and Articles. In addition to publishing primary research, Nature Physics serves as a central source for top-quality information for the physics community through Review Articles, News & Views, Research Highlights on important developments published throughout the physics literature, Commentaries, Book Reviews, and Correspondence.

About Northeastern:

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Laura Shea Souza | EurekAlert!
Further information:
http://www.nature.com/nphys/index.html
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>