Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LSU Professor Works With International Researchers to Make Quantum Physics Discovery

John F. DiTusa, professor of physics and astronomy at LSU, and his international colleagues have discovered an unusual magnetic material that behaves very differently from the average refrigerator magnet.

He recently co-authored an article with researchers from around the world, titled, “Mesoscopic Phase Coherence in a Quantum Spin Fluid.” Their findings will be published in the July 26 edition of the prestigious Science magazine.

The results of their research have strong implications for the design of devices and materials for quantum information processing.

The group’s main goal was to demonstrate string order – also called quantum phase coherence – and to determine the factors affecting the ability to maintain this property over a finite distance. In order to investigate this, DiTusa, together with an international team of researchers, looked at a quantum spin liquid, a system where electron spins are coupled, but point in random directions. These spins can be thought of as atomic-sized bar magnets that point in random arrangements, which is in direct contrast to the behavior of household magnets, where the spins are mostly aligned. The material in which they discovered the quantum spin liquid is composed of chains of nickel-oxygen-nickel atoms.

The group found that the string order was maintained for relatively long distances, nearly 30 nanometers, or 100 times the distance between nickel atoms in the solid state, at temperatures close to absolute zero.

“I like to think of this novel state of matter as an orchestra without a conductor, each musician playing whatever comes to mind,” said DiTusa. “Though one trumpet player likes to play Jimmie Hendrix and an oboe player likes to play Bach, a miraculous occurrence takes place and, without realizing it, the entire room of musicians becomes locked into playing a Brahms symphony.”

In this case, DiTusa contends, the whole orchestra is acting as a single coherent entity, even though they are playing different parts of a nonexistent score. This coherence has a length scale of the size of the concert hall and lasts a time determined by the length of the symphony.

“In our nickel oxide magnet, although the individual nickel atoms don’t have spins that point all in the same direction, or even form a regularly repeating pattern, they all hang together to make a beautiful, coherent symphony,” he said.

Collaborators on this research include: Guangyong Xu of Johns Hopkins University and Brookhaven National Laboratory; Collin L. Broholm, Ying Chen and Michel Kenzelmann of Johns Hopkins University and the National Institute of Standards and Technology Center for Neutron Research; Yeong-Ah Soh of Dartmouth College; Gabriel Aeppli of the London Centre for Nanotechnology and University College of London; Christopher D. Frost from the ISIS Facility, Rutherford Appleton Laboratory, U.K.; Toshimitsu Ito and Kunihiko Oka of the National Institute of Advanced Industrial Science and Technology, or AIST, in Japan; and Hidenori Takagi, also from AIST and the University of Tokyo.

For more information, contact DiTusa at or 225-578-2606.

John F. DiTusa | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>