Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU Professor Works With International Researchers to Make Quantum Physics Discovery

31.07.2007
John F. DiTusa, professor of physics and astronomy at LSU, and his international colleagues have discovered an unusual magnetic material that behaves very differently from the average refrigerator magnet.

He recently co-authored an article with researchers from around the world, titled, “Mesoscopic Phase Coherence in a Quantum Spin Fluid.” Their findings will be published in the July 26 edition of the prestigious Science magazine.

The results of their research have strong implications for the design of devices and materials for quantum information processing.

The group’s main goal was to demonstrate string order – also called quantum phase coherence – and to determine the factors affecting the ability to maintain this property over a finite distance. In order to investigate this, DiTusa, together with an international team of researchers, looked at a quantum spin liquid, a system where electron spins are coupled, but point in random directions. These spins can be thought of as atomic-sized bar magnets that point in random arrangements, which is in direct contrast to the behavior of household magnets, where the spins are mostly aligned. The material in which they discovered the quantum spin liquid is composed of chains of nickel-oxygen-nickel atoms.

The group found that the string order was maintained for relatively long distances, nearly 30 nanometers, or 100 times the distance between nickel atoms in the solid state, at temperatures close to absolute zero.

“I like to think of this novel state of matter as an orchestra without a conductor, each musician playing whatever comes to mind,” said DiTusa. “Though one trumpet player likes to play Jimmie Hendrix and an oboe player likes to play Bach, a miraculous occurrence takes place and, without realizing it, the entire room of musicians becomes locked into playing a Brahms symphony.”

In this case, DiTusa contends, the whole orchestra is acting as a single coherent entity, even though they are playing different parts of a nonexistent score. This coherence has a length scale of the size of the concert hall and lasts a time determined by the length of the symphony.

“In our nickel oxide magnet, although the individual nickel atoms don’t have spins that point all in the same direction, or even form a regularly repeating pattern, they all hang together to make a beautiful, coherent symphony,” he said.

Collaborators on this research include: Guangyong Xu of Johns Hopkins University and Brookhaven National Laboratory; Collin L. Broholm, Ying Chen and Michel Kenzelmann of Johns Hopkins University and the National Institute of Standards and Technology Center for Neutron Research; Yeong-Ah Soh of Dartmouth College; Gabriel Aeppli of the London Centre for Nanotechnology and University College of London; Christopher D. Frost from the ISIS Facility, Rutherford Appleton Laboratory, U.K.; Toshimitsu Ito and Kunihiko Oka of the National Institute of Advanced Industrial Science and Technology, or AIST, in Japan; and Hidenori Takagi, also from AIST and the University of Tokyo.

For more information, contact DiTusa at ditusa@phys.lsu.edu or 225-578-2606.

John F. DiTusa | EurekAlert!
Further information:
http://www.phys.lsu.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>